

केन्द्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

Simdega District Jharkhand State

मध्य पूर्वी क्षेत्र<mark>,</mark> पटना Mid Eastern Region, Patna

भारत सरकार Government of India जल शक्ति मंत्रालय Ministry of Jal Shakti जल संसाधन, नदी विकास और गंगा संरक्षण विभाग Department of Water Resources, River Development & Ganga Rejuvenation केन्द्रीय भूमि जल बोर्ड Central Ground Water Board

Aquifer Maps and Ground Water Management Plan of Simdega district, Jharkhand जलभृत नक्शे तथा भूजल प्रबंधन योजना

सिमडेगा जिला, झारखण्ड

Principal Authors

Sunil Toppo, Scientist-B Dr. Sudhanshu Shekhar, Scientist-D Dr Anukaran Kujur, Scientist-B

> State Unit Office, Ranchi Mid - Eastern Region, Patna August 2022 राज्य एकक कार्यालय, रांची मध्य - पूर्वी क्षेत्र, पटना अगस्त, 2022

REPORT ON AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN OF SIMDEGA DISTRICT, JHARKHAND, 2021-22

CONTRIBUTORS'

Principal Authors

Sunil Toppo, Scientist-B Dr Sudhanshu Shekhar, Scientist-D Dr Anukaran Kujur, Scientist-B

Supervision & Guidance

T.B.N. Singh, Regional Director B. K. Oraon, Scientist-E & OIC Rajiv Ranjan Shukla, Scientist-E & OIC

Hydrogeology, Groundwater Exploration GIS maps and Management Plan

Sunil Toppo, Scientist-B Dr Anukaran Kujur Scientist-B Atul Beck, Assistant Hydrogeologist

Geophysics

B. K. Oraon, Scientist-E

Chemical Analysis

Dr Suresh Kumar, Assistant Chemist

REPORT ON NATIONAL AQUIFER MAPPING AND MANAGEMENT PLAN OF SIMDEGA DISTRICT, JHARKHAND, 2021-22

Chapter	Details	Page
No.		No.
1.0	INTRODUCTION	1-11
	1.1 Objective and Scope of the study	1
	1.2 Approach and methodology	2
	1.3 Area details	3
	1.4 Data Availability, Data Adequacy and Data Gap Analysis	4
	1.4.1 Data availability	4
	1.4.2 Data adequacy and data gap analysis	4
	1.5 Climate and Rainfall	4
	1.6 Geomorphology	5
	1.7 Land use	6
	1.8 Soil	7
	1.9 Hydrology and drainage	7
	1.10 Agriculture and irrigation practice	8
	1.11 Cropping pattern	9
	1.12 Geology of the area	10
2.0	DATA COLLECTION AND GENERATION	12-40
	2.1 Hydrogeology	12
	2.1.1 Ground Water in Aquifer-I (Weathered)	13
	2.1.2 Ground water in Aquifer – II (fractured)	13
	2.1.3 Ground Water Dynamics	15
	2.1.3.1 Water Level Scenario – Aquifer – I (Shallow Aquifer)	15
	2.1.3.2 Water level fluctuation	16
	2.1.3.3 Last ten years long term water level trend (2012 – 2021)	17
	2.1.3.4 Hydrograph analysis	18
	2.2 Geophysical survey	24
	2.3 Ground Water Exploration	25
	2.4 Ground water Quality	26
	2.4.1 General range of chemical parameter of Aquifer - I in	26
	the area	
	2.4.1.1 Suitability of ground water of Aquifer – I (shallow	28
	aquifer) for drinking purposes	
	2.4.1.2 Suitability of ground water of Aquifer – I for irrigation	29
	purposes	
	2.4.2 General range of chemical parameter of Aquifer - II in	35
	the area	
	2.4.2.1 Suitability of ground water of Aquifer – II (deeper	35
	aquifer) for drinking purposes	

	2.4.2.2 Suitability of ground water of Aquifer – II for irrigation	36
	purposes	
3.0	DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING	41-46
	3.1 Aquifer Disposition	41
	3.1.1 Hydrogeological Cross Section	41
	3.1.1.1 Hydrogeological cross section A-A'	41
	3.1.1.2 Hydrogeological cross section B-B'	43
	3.1.1.3 Hydrogeological cross section C-C'	43
	3.1.2 3-D and 2-D Aquifer Disposition	44
	3.2 Aquifer characteristics	45
	3.3 Aquifer Maps	46
4.0	GROUND WATER RESOURCE	47-50
	4.1 Assessment of Annually Replenishable or Dynamic Ground Water	47
	Resources (Unconfined Aquifer i.e. Aquifer-I)	
	4.1.1 Recharge Component	48
	4.1.2 Ground Water Availability, Draft and Storage of GW development	49
	4.2 Assessment of In-Storage Ground Water Resources or static Ground Water	50
	Resources (Unconfined Aquifer i.e. Aquifer – I)	
	4.3 Assessment of Total Ground Water Availability in Unconfined Aquifer	50
	(Aquifer – I)	
5.0	GROUND WATER RELATED ISSUES	51-54
	5.1 Low Ground Water Development	51
	5.2 Low Ground Water Potential / Limited Aquifer Thickness /	52
	Sustainability	
	5.3 Ground water contamination	52
	5.3.1 Fluoride contamination	52
6.0	MANAGEMENT STRATEGIES	55-58
	6.1 Supply Side Management	55
	6.1.1 Ground Water Resource Development Strategy	56
	6.1.2 Rainwater Harvesting and Artificial recharge to Ground Water	57
	6.2 Demand Side Management	57
	6.3 Ground water management strategy for Fluoride affected areas	57
	6.4 Urban water supply	58
	6.5 Rural water supply	58
7.0	Sum - up	59-60
8.0	BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN	61-109

List of tables							
Table No.	List of table	Page					
		No.					
Table - 1	Data adequacy and data gap analysis	4					
Table - 2	Analytical data of monsoon rainfall (2012 – 2021) of Simdega district	5					
Table - 3	Land use pattern of Simdega district (2019 – 2020)	7					
Table - 4	Cropping pattern of Simdega district (2019 - 20)	9					
Table - 5	Summarized result of APT	26					
Table - 6	Potential fractures encountered during ground water exploration in Simdega district, Jharkhand	14					
Table - 7	Block wise VES carried out and recommendation for drilling in Simdega district	25					
Table - 8	Last ten years long term water level trend of Simdega district (2012 – 2021)	17					
Table - 9	Suitability of ground water of Aquifer- I for drinking purposes	28					
Table - 10	Classification of ground water of Aquifer - I based on sodium percent	29					
Table - 11	Classification of ground water of Aquifer – I based on SAR value	30					
Table - 12	Classification of ground water of Aquifer – I based on RSC value	31					
Table - 13	Classification of ground water of Aquifer - I based on electrical conductivity (EC)	32					
Table - 14	Values of Sodium percentage, SAR, RSC and EC of water samples collected from Aquifer – I (Dug wells), Simdega district	33					
Table - 15	Ranges of chemical constituents of Aquifer - II in Simdega district (hand pump samples)	34					
Table - 16	Suitability of ground water of Aquifer- II (deeper aquifer) for drinking purposes	36					
Table - 17	Classification of ground water of Aquifer - II based on Na %	36					
Table - 18	Classification of ground water of Aquifer – II based on SAR value	37					
Table - 19	Classification of ground water of Aquifer – II based on RSC value	38					
Table - 20	Classification of ground water of Aquifer - II based on EC	39					
Table - 21	Values of Sodium Percentage, SAR, RSC AND EC of water samples collected	40					
	from Aquifer – II (Hand pumps), Simdega district						
Table - 22	Aquifer characteristic of Simdega district	45					
Table - 23	Dynamic Ground Water Resources of Simdega district (As on 31 st March - 2020)	47					
Table - 24	Recharge Components evaluated for Resource Estimation: Simdega district	48					
Table - 25	Block wise dynamic ground water resource of Simdega district (As on 31 st March 2020)	50					
Table - 26	Location details of Fluoride concentration found beyond permissible limit in ground water Simdega district	53					
Table - 27	Future Irrigation Potential & Proposal number of Abstraction Structures based on SOD (50%)	55					
Table - 28	Irrigation Potential Created & No. of structure for assured irrigation	56					
Table - 29	Artificial recharge structures feasible in Simdega district.	57					
Table - 30	Block wise number of Rural Water Supply Schemes of Simdega district	58					

List of figures

Figure No.	List of figure	Page No.
Figure - 1	Location map of Simdega district	3
Figure - 2	Drainage map of Simdega district.	8
Figure - 3	Major crops of Simdega district (2019-20)	10
Figure - 4	Geological Map of Simdega District	11
Figure - 5	Hydrogeological map of Simdega district	13
Figure - 6	Pre monsoon depth to water level map of Simdega district (May 2021)	15
Figure - 7	Post monsoon depth to water level map of Simdega district (Nov. 2021)	16
Figure - 8	Seasonal water level fluctuation map of Simdega district (2021)	17
Figure - 9	Pre and post monsoon Hydrographs Simdega district (8a – 8l)	18
Figure - 10	Piper' diagram for shallow water samples of Simdega district	31
Figure - 11	EC map of Aquifer – I of Simdega district	33
Figure - 12	Piper' diagram for deeper water samples of Simdega district	38
Figure - 13	EC map of Aquifer – II of Simdega district	39
Figure - 14	Location map of cross section	42
Figure - 15	Hydrogeological cross section along A – A'	42
Figure - 16	Hydrogeological cross section along B – B'	43
Figure - 17	Hydrogeological cross section along C – C'	44
Figure - 18	3D subsurface lithological models with Aquifer Disposition in hard rock	45
	areas of Simdega district	
Figure – 19	Aquifer Map of Simdega District	46
Figure - 20	Recharge from various sources	49
Figure – 21	Net GW Availability & Draft of Simdega district (2020)	49
Figure – 22	GW Stage of development in Simdega district	51
Figure – 23	Yield wise classification of bore wells drilled in Simdega district	52
Figure – 24	Sample wise Fluoride concentration of shallow aquifer in Simdega	53
	district.	
Figure – 25	Sample wise Fluoride concentration deeper aquifer in Simdega district	54

List of Annexure

Annexure No.	List of annexure	Page No.
Annexure - I	Last ten years annual rainfall data analysis Simdega district (2012 to 2021)	110
Annexure - II	Details of key wells established for national aquifer mapping study of Simdega district, 2021-22	114
Annexure - III	Water level data of key wells of national aquifer mapping study area of Simdega district, Jharkhand, 2021-22	118
Annexure - IV	Details of wells constructed in hard rock formation of Simdega district, Jharkhand	120
Annexure - V	Water quality data of aquifer – I (dug well samples) of aquifer mapping study area of Simdega district	125
Annexure - VI	Water quality data of aquifer – II (hand pump samples) of aquifer mapping study area of Simdega district	128

REPORT ON AQUIFER MAPS AND MANAGEMENT PLAN OF SIMDEGA DISTRICT, JHARKHAND STATE (2021 – 22)

1.0 INTRODUCTION

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious aquifers, lack of regulation mechanism etc has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "Traditional Groundwater Development concept" to "Modern Groundwater Management concept". Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. This leads to concept of Aquifer Mapping and Ground Water Management Plan. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation.

During XII five year plan (2012-17) National Aquifer Mapping (NAQUIM) study was initiated by CGWB to carry out detailed hydrogeological investigation. The Aquifer Mapping programme has been continued till 2023 to cover whole country. The present study of Simdega district has been taken up in AAP 2021-22 as a part of NAQUIM Programme. The aquifer maps and management plans will be shared with the administration of Simdega district and other user agencies for its effective implementation.

1.1 Objective and Scope of the study:

The major objectives of aquifer mapping are

- Delineation of lateral and vertical disposition of aquifers and their characterization
- Quantification of ground water availability and assessment of its quality to formulate aquifer management plans to facilitate sustainable management of ground water resources at appropriate scales through participatory management approach with active involvement of stakeholders.

The groundwater management plan includes Ground Water recharge, conservation, harvesting, development options and other protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e, the aquifer map and management plan.

The main activities under NAQUIM are as follows:

- a). Identifying the aquifer geometry
- b). Aquifer characteristics and their yield potential
- c). Quality of water occurring at various depths
- d). Aquifer wise assessment of ground water resources
- e). Preparation of aquifer maps and
- f). Formulate ground water management plan.

The demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a **"Road Map"** to systematically manage the ground water resources for equitable distribution across the spectrum.

1.2. Approach and methodology:

The ongoing activities of NAQUIM include hydrogeological data acquisition supported by geophysical and hydro-chemical investigations supplemented with ground water exploration down to the depths of 200 meters.

Considering the objectives of the NAQUIM, the data on various components was segregated, collected and brought on GIS platform by geo-referencing the available information for its utilization for preparation of various thematic maps. The approach and methodology followed for Aquifer mapping is as given below:

1.3 Area details: Simdega district of Jharkhand state is located in the southern part of the state. It covers an area of about 3752.29 Sq. Km. The Simdega town is located about 170 km from Ranchi on Rourkela (Orisaa) road. The district is bounded in the north by the Gumla district, in the east by Ranchi district, in the south by Orissa state and in the west by the Chhatisgarh state. The district is situated between $22^{\circ} 20' 30''$ and $23^{\circ} 50' 15''$ N latitude and $84^{\circ} 01' 00''$ and $85^{\circ} 04' 30''$ E longitude. The district is covering Survey of India toposheet nos. 73 A/ 03, 04, 06, 07, 08, 11, 12, 15, 16, 73 B/ 01, 05, 09, 10, 13 and 14. The Simdega district comes under the south Chhotanagpur division. It has one sub – division i.e. Simdega Sadar sub – division. Further, the sub – division is divided into ten blocks namely – Simdega, Bano, Jaldega, Kolebira, Kurdeg, Thetaitanger, Pakartanr, Kersai and Bansjor (Fig. 1).

1.4 Data Availability, Data Adequacy and Data Gap Analysis

1.4.1. Data availability: Central Ground Water Board has carried out exploratory drilling in the district and drilled 10 exploratory and 07 observation wells by departmental rig during the year 2008-2009. In addition, 15 exploratory wells and 03 observation wells were drilled through outsourcing drilling during the year 2020 -21 in the district. At least three exploratory and one observation wells are to be drilled in each block to know the sub – surface geology, depth and thickness of water bearing formation with their yield and determine the different aquifer parameters.

In addition, 14 numbers of permanent observation well (HNS) of Central Ground Water Board located in the district for monitoring of ground water regime and to assess the chemical quality of ground water.

1.4.2 Data Adequacy and Data Gap Analysis: The available data of the Exploratory wells drilled by Central Ground Water Board, State Unit Office, Ranchi, Geophysical Survey carried out in the area, ground water monitoring stations and ground water quality stations monitored by Central Ground Water Board were compiled and analyzed for adequacy of the same for the aquifer mapping studies.

After taking into consideration, the available data of ground water exploration, geophysical survey, ground Water monitoring and ground water quality, the data adequacy is compiled and the summarised details of required, existing and data gap of exploratory wells, ground water monitoring and ground water quality stations is given below in Table-1.

Exploration data			Geophysical data			GW monitoring data (HNS)			GW quality data		
Req.	Exist.	Gap	Req.	Exist.	Gap	Req.	Exist.	Gap	Req.	Exist.	Gap
36	25	11	50	127	0	20	14	06	20	14	6

Table - 1: Data adequacy and data gap analysis

The data adequacy as discussed above indicates that the existing data is not sufficient for preparation of aquifer maps; hence data gap has been identified for Exploratory Wells, Geophysical Survey (VES), Ground Water Monitoring Wells and Ground Water Quality. Each three numbers of exploratory wells are required in Kurdeg and Kersai blocks, two numbers of exploratory wells are required in each block of Bolba and Bansjor of the district. Similarly, at least one exploratory well is required in Pakartarn block.

1.5 Climate and Rainfall: The Simdega district enjoys a healthy climate through out the year. Normal atmospheric temperature in the area often goes up to 42° c in summer and it goes down to about 4° c during winter.

The climate of the area could be divided in to three district season. The winter commences from November and extends of to middle of March, December being the coldest month. The winter season is characterized by heavy dew thick fog and cold wave. The rainy season last up to middle of October. The area is free from hot winds and dust storm. The monsoon sets in by the middle of June and continues till the middle of October. The area receives rain fall mainly by North-west monsoon during rainy season and from retreating monsoon during inter-monsoon period, which originates in the Bay of Bengal. The average annual rainfall of the district is 1487 mm. Rainfall is the only sources of replenishment of ground water in the district.

The district belongs to the higher rainfall class with large annual variation. The average rainfall last ten years (2012 - 2021) of the distinct is 1230.56 mm. The maximum rainfall occurs during the first half of July to first half of August and contributes about 50 % of the total rainfall. The monsoon season contributes about 85 % of the total annual rainfall. However dry spell of 4-8 days have been very common in the month of July and /or August. The maximum humidity is observed during the monsoon season with mean value of 85%, where as the minimum humidity is observed during April-May which is 27 %. Generally the weather during the other seasons is more or less dry and in the comfortable zone.

The Decadal average annual rainfall (2012 to 2021) varies from 1058.31 to 1515.49 mm. The rainfall data for the period of 2012–21 has been worked out and analyzed Decadal average annual rainfall, standard deviation and coefficient of variation which are given table – 2. Block wise annual rainfall (2012 – 2021) is presented in Annexure - I.

Sr. No.	Block	Decadal average annual	Standard	Coefficient of
		rainfall (mm)	deviation	variation (%)
1	Simdega	1492.18	318.27	21.33
2	Kurdeg	1295.83	299.93	23.15
3	Bolba	1085.81	219.98	20.26
4	Thethaitangar	1515.49	271.36	17.91
5	Bano	1080.02	287.90	26.66
6	Jaldega	1058.31	278.01	26.27
7	Kersai	1229.03	379.56	30.88
8	Pakartarn	1285.86	227.58	17.70
9	Kolebira	1072.65	320.39	29.87
10	Bansjor	1190.45	255.32	21.45

Table – 2: Analytical data of monsoon rainfall (2012 – 2021) of Simdega district

1.6 Geomorhpology: The region in Chotanagpur plateau is having large physical inequalities presents a rich panorama of topographical features. The general configuration of region varies from valley fills, pedeplains, to structural ridges.

The large difference relief brings about strong, contrast climate, natural vegetation, surface drainage, ground water and soil profile. In the pat region the rivers are long deep and with terrace but in pedeplain area they are wide with gentle slopes. The general slope of the district is towards south direction. The general elevation of the district is 300 to 700 m above MSL. The major geomorphic units of the district are as follows –

1. Burried pediments: the pediments are gently sloping flat platform extending from foot of the hills and ridges. Basically it is a rock out surface but in the tropics and subtropics it is generally burried under the cover of transported material coming from the hills. Thickness of over burden is considerably high. Ground water potential of this geomorphic unit is moderate.

2. Dissected pediment: This is also a pediment but is heavily dissected. It is dissected by numerous streams flowing across it. Thickness of weathered material is also more and topography is much more rugged. Ground water potential of this geomorphic unit is poor to moderate.

3. Denudational hills/ inselbergs: There are numerous large and small isolated hills scattered throughout the district. Runoff is very high and regolith is absent thus the hills look like a dome. Since they are highly jointed and foliated, boulder, cobbles and pebbles are also present within the foot hills. Ground water potential of this geomorphic unit is very poor.

4. Valley fill: These are relatively low lying area between uplands. These valley fills constitute boulders, cobbles, pebbles, gravels, sand, silt and clay. These sediments are poorly sorted. Ground water potential of this geomorphic unit is moderate.

5. Dissected pediplain: the soil cover in this area is of considerable thickness as compared to other geomorphic unit of the area. These are undulating erosional surface with high intensity of pegmatitic veins in the granites and granite gneiss which is the underlying lithology of the unit. Ground water potential of this geomorphic unit is poor to moderate.

6. Denudational hills: There are numerous large and small isolated hills scattered throughout the district. Majority of the hills are devoid of vegetation cover except the highest ones. Ground water potential of this geomorphic unit is poor.

7. Structural ridge: Structural ridges are that hills area which shows a preferred orientation, in conformity to prevailing geological structure. Moderate reliefs, presence of forest are characteristic features. Runoff is very high. Ground water potential of this geomorphic unit is poor.

1.7 Land use:

The district is predominantly agrarian and majority of population in rural areas depend on agriculture and other allied activities, which do not give steady and sufficient income. Therefore, poverty and illiteracy dominate the rural scenario. Our land mass is fixed, but the competition among different kinds of uses for this land is increasing because of rapidly rising global population. Therefore, integrated land resource planning and management are required to resolve these conflicts.

Out of total geographical area of the district i.e. 3752.29 Sq. km, about 20 % area comes under net sown area, 27% under forests and the rest area falls under barren, cultivable waste, pasture

and other agricultural use. Block wise land utilization data of the Simdega district for the year 2019 - 20 is given in table – 3.

	(Figures in Hectare)									
Block	Area of the block (Sq. km.)	Forest land	Barren & non cultiva- ble land	Culti- vable waste land	Perm- anent past-ures & other grazing land	Land under miscell- aneous trees	Current fallow	Fallow land other than current fallow	Net area sown	Area sown more than once
Simdega	446.67	8763.83	2868.84	1235.63	266.02	1066.53	9209.18	10684.32	9822.74	409.44
Pakartarn	301.31	7982.68	3683.86	1668.14	0.00	1083.23	3624.54	3134.95	7007.29	246.23
Kurdeg	262.30	8162.81	2578.30	1936.00	508.81	1065.24	2674.85	2648.92	6503.09	425.60
Kersai	249.40	5324.06	1629.45	1579.08	270.58	307.35	3245.74	3711.03	6083.95	614.72
Bolba	288.63	12285.89	1744.11	1025.15	0.00	0.00	3912.08	3531.90	5221.45	240.72
Thethaitangar	624.15	18380.55	1874.08	2001.83	0.00	980.60	13931.88	11518.67	11034.40	132.85
Bansjor	164.50	5311.16	480.51	258.82	340.74	499.85	2436.86	2615.07	2321.64	87.48
Jaldega	428.20	14417.59	2385.99	255.94	1292.20	2187.66	8379.85	6241.62	5103.81	171.71
Bano	549.77	11124.27	2426.83	2441.34	67.78	3049.93	8248.58	11995.18	12666.00	334.18
Kolebira	437.36	10118.95	2072.62	2780.32	4.05	1817.41	4536.10	7242.18	13478.05	314.11
Total	3752.29	101871.79	21744.55	15182.26	2750.18	12057.81	60199.66	63323.85	79242.43	2977.04

Table: 3: Land use pattern of Simdega district (2019 – 2020)

Source: - District Statistics office, Simdega, GOJ

1.8 Soil: Soils in Simdega district have formed as a result of insitu weathering of crystalline rock (granite & gneisses), climate, topography and vegetation have contributed in the formation of soils in the area. The following types of soils are found in the entire district –

(i). Alluvial soil: All the river channels in the area are covered with alluvial soil recent of origin deposited over consolidated rocks. Alluvial fills are also found in patches away from the river channels. Thickness of these fills depends upon the topographical control. The alluvial sediments are comprised of coarse sand and gravel mixed with silt and clay, silt materials predominates over clayey materials.

(ii). Grey eroded scarp soil: This covers almost the entire are as a thin capping over granitic rocks.

(iii). **Red calcareous soil:** The red calcareous soils are found in some parts mainly in the intermontance valley. They are mostly sandy loam mixed with kankar.

(iv). Forest soil: Forest soil is confined to the reserve forest area and have surface layer of organic matter.

1.9 Hydrology and Drainage: The district is forming Sankh sub basin of the Brahmni basin. The river Sankh is the main river of the district, which flows north to south direction in the western part of the district. The tributaries of the river Sankh are the Palamara, Girma, Chhinda, Lurgi

and Dev rivers. The other important river of the district is the river South Koel which form the eastern boundary of the district. The river South Koel flows north to south direction and finally joint with the river Sankh in Oriissa state. All these drainage is characterized by rapid surface run – off. All these rivers are seasonal in nature. The drainage pattern of the district is dendritic.

Figure – 2: Drainage map of Simdega district.

1.10 Agriculture and Irrigation practice: Agriculture and forestry are the two main occupations of the local population in the district. But the land available for the cultivation is limited because of the hilly and rigged topography. The absence of proper and the assured source of the irrigation have impeded the growth of agriculture.

Undulating topographic features characterize the district. The agricultural activity of the district is solely dependent upon the monsoon rainfall and the kharif crops mainly paddy is grown extensively. Irrigational facilities are not adequate in the district. Well is the most common source of irrigation, but this is not very dependable source. The major part of the district being rocky, it is difficult to dig deep dug wells. Where there exists facility for irrigation during Rabi season from the ponds and store water in small nalas, vegetable is the major crop grown in that area. The summer paddy is grown in low lying areas in few places. Irrigation data from state Govt. could not collected due the 6th Minor Irrigation censes under process. 5th Irrigation census data of Simdega district is unsatisfactory.

1.11 Cropping pattern:

The main economic activity in the district is agriculture. Paddy and Maize are the two main crops in the district. The agro climatic condition of the district is suitable for cultivation of a variety of fruits like mango, guava, jack fruit and vegetables like cauliflower, tomato, brinjal etc. There are some good clusters of vegetable cultivation in Kurdeg, Simdega and Kersai blocks in the district. However, in the absence of assured irrigation facility, agriculture in the district is primarily rain fed and as a result, mainly mono-cropping and subsistence farming is practiced in the district.

As per the agro-climatic zones delineated by Planning Commission, Simdega district falls under Zone (VI) i.e., Ranchi plateau and Netarhat hill region. It requires strategic planning so as to maximize the use of rainwater, increased ground water utilization level to achieve balanced crop production. Water resources also need to be developed through dug wells and lift irrigation. Watershed development also holds promise in the district.

The cropping pattern followed in the region is by and large under rain fed conditions. 85% of kharif is under paddy. The other main kharif crops are madua, maize, arhar and urad. Rabi crops are grown only in areas where there is irrigation facility. Main rabi crop of the district is vegetables like potato, tomato, cauliflower, brinjal etc. Productivity of agriculture is poor in the district. The erratic nature of the rainfall and its long inter spell gaps lead to frequent crop failure over a large part of the district. Area under crop for the year 2019 – 20 of the district is presented in table - 4.

		(Area in hectare)						
Sr. No.	Block	Major Crops						
		Paddy	Pulses	Maize	Oil seeds	Vegetable	Wheat	
1.	Bagodar	2760.20	681.22	990.69	234.28	300.09	348.94	
2.	Sariya	2932.39	792.44	1048.82	243.89	209.54	352.59	
3.	Dumri	4939.41	855.74	1648.11	139.76	536.53	391.74	
4.	Pirtarn	3943.02	698.01	964.88	258.91	379.89	410.06	
5.	Giridih	6575.82	870.11	1309.82	390.89	330.80	584.04	
6.	Gandey	6481.23	1136.87	1399.52	717.43	502.42	514.47	
7.	Bengabad	6555.79	1503.71	1316.32	515.16	468.93	489.82	
8.	Jamua	7476.96	1058.59	1448.21	581.30	1326.30	509.37	
9.	Dhanwar	7214.26	1297.93	1493.58	701.01	578.07	688.85	
10.	Birni	5903.46	967.53	1268.36	366.11	543.85	605.68	
11.	Devri	7913.73	1018.38	1347.01	522.52	1171.74	516.07	
12.	Tisri	4808.18	1016.11	1832.75	524.96	596.90	521.93	
13.	Gawan	5014.30	1388.15	1936.64	514.01	400.41	696.62	
Total		72518.75	13284.79	18004.71	5710.23	7345.47	6630.18	

Table – 4: Cropping pattern of Simdega district (2019 - 20)

Source: - District Statistic office, Simdega, GOJ

Figure – 3: Major crops of Simdega district (2019-20)

1.12 Geology of the area: In general the Simdega district forming South-Western part of the Chotanagpur plateau is predominated by Chotanagpur granite gneiss of Archean age, which forms the basement in the area. It occurs as large batholithic mass. The granite gneiss is foliated where as granites are massive, but foliation is sometimes seen in granitic rocks also. Both the rock units have same mineral composition. The minerals are quartz, feldspar and biotite. Pegmatite veins are seen intruded all along the granitic terrain.

The general geological succession of the district may be given as under –

Age		Formation			
Recent to sub - recent		Alluvium			
	Unconformity				
		Dalma lava			
Archean		Schist & phyllites			
		Chotanagpur Granites & granite gneiss			

In order to understand the sub-surface hydrogeology of the Simdega district, central Ground Water Board has constructed 25 exploratory and 10 observation wells. The drilling results have indicated that the granite gneiss of different shades varying from whitish grey to dark, grey to pink, having coarse grained texture are the most prevalent rock types encountered over the district. The lithologs of the 10 exploratory wells is given in Annexure – V. Geology of Simdega has been depicted in Fig-

Fig-4. Geology of Simdega district, Jharkhand Source: DMG, Jharkhand

2. DATA COLLECTION AND GENERATION

Central Ground Water Board has established a network of observation wells under National Hydrograph Network programme to study the behaviour of ground water level and quality of ground water in the district. To understand the sub–surface geology, identify the various water bearing horizons including their depth, thickness and compute the hydraulic characteristics such as transmissivity and storativity of the aquifers, exploratory drilling programme was carried out by Central Ground Water Board has carried out exploratory drilling in the district and drilled 10 exploratory and 07 observation wells by departmental rig during the year 2008-2009. Similarly, 15 exploratory wells and 03 observation wells were drilled through outsourcing drilling during the year 2020-21.

2.1 Hydrogeology:

Simdega district is mainly a dissected upland of ancient crystalline rocks which covers the major parts of the district. Ground water availability in crystalline rocks is considered to be poor because of the absence of primary porosity which is essential for the occurrence and movement of ground water. The secondary porosity in the form of fractures, fissures, joints etc. develop due to orogenic movements aided by weathering, making the crystalline rocks potential repository for the occurrence and movement of ground water. The ground water in the district is controlled primarily by the thickness of weathered zone, extent, size openness and interconnection of fractures, geological and topographical setting. In major part of the district characterized by the hard rocks is located in the weathered residuum in the shallow depth under unconfined condition and circulates through the under lying fracture system extending to deeper horizon under semi – confined to confined conditions. Generally two types of aquifers are found in the district namely, the weathered aquifer and fractured aquifers. Hydrogeological map is shown in figure 5.

Hydrogeological Map of Simdega district Map

Figure – 5: Hydrogeological map of Simdega district

2.1.1 Ground Water in Aquifer-I (Weathered):

Thickness of weathered aquifers varies from 2.50 - 45 m in granite terrain, based to CGWB exploratory wells. Within the depth zone of dug wells, the weathered zone influences to a greater in the hard rock formation constitute potential phreatic shallow aquifer. This zone of weathered and less fractured zone, should be developed either through large diameter open wells or shallow bore wells of 20 - 50 m depth which permits draft upto $10 \text{ m}^3/\text{hr}$ for domestic as well as irrigating small holdings of land. Hand pumps constructed by State Government Department generally tap first fracture zones in 9 - 50 mbgl.

2.1.2 Ground Water in Aquifer-II (fractured): 35 numbers of boreholes have been constructed by CGWB in the district under ground water exploration programme upto maximum depth of 201.00 m. These borehole data reveals that, in general potential fractures are encountered between 9 - 193 m. The yield of exploratory wells found between 0.47 to 72.00 m³/hr. Table-5 shows the Potential Fracture encountered during Ground Water Exploration in Simdega district.

S.	Location	Block	Depth	Depth	Major	Potential	Static	Yield
No.			drilled	of	lithology	fractured zone	water	(m3/hr)
			(mbgl)	casing	encountered	(mbgl)	level	
				(mbgl)			(mbgl)	
1	Kolebira	Kolebira	83.62	3.00	Granite	15.00 - 16.00	0.30	72
					Gneiss	83.00 - 83.62	(magl)	
2	Bano	Bano	199.20	8.20	Granite	80.00 - 81.00	6.93	10.80
					Gneiss	144.00 - 146.00		
3	Lachragarh	Kolebira	199.92	11.50	Granite	144.00 - 146.00	5.70	16.20
					Gneiss			
4	Pandripani	Thetaitangar	170.94	9.00	Granite	18.00 - 19.00	4.40	28.08
					Gneiss	109.00 - 111.50		
5	Simdega	Simdega	199.92	12.00	Granite	181.00 - 182.50	10.40	10.8
					Gneiss			
6	Joram	Thetaitangar	123.72	18.50	Granite	9.00 - 15.50	2.15	44.28
					Gneiss	75.00 – 77.00		
						130.00 - 131.00		
7	Tutikel	Kolebira	135.00	17.79	Granite	134.00 - 136.00		43.88
					Gneiss			
8	Bansjor	Bansjor	177.00	45.23	Phylite	54.00 - 55.00		35.5
						175.00 - 176.00		
9	Gangu Toli	Jaldega	201.00	14.74	Granite	91.00 - 92.00		21.38
					Gneiss	192.00 - 193.00		

Table – 5: Potential fractures encountered during ground water Exploration in Simdega district, Jharkhand

Source: CGWB

On the basis of field investigations and results of exploratory wells drilled in the district, salient findings are summarized as:-

- In general in fissured formations, discharge of well has been found in the range of 0.47 -72.00 m³/hr.
- Overall in the district the major potential fractures zones are found upto 150 m.
- First potential fracture zone encountered in the district widely varies from 9.00 181 m.
- Sometimes the potential fractures were encountered at very shallow level 15.00-16.00 m with very high yielding wells. These potential fractures may be tensile in nature occurring at shallow level, which is found to be potential repository of ground water. Some of the exploratory wells encountered upto the depth of 82.00 m which yielded high discharge e.g. Kolebira (72 m³/hr) and Lachragarh (16.20 m³/hr).
- Some of high yielding well where multiple fractures were encountered within 150 m depth are Kolebira (72.00 m³/hr, Bano (10.80 m³/hr), Pandripani (28.08 m³/hr), Joram (44.28 m³/hr) and Tutikel (43.88 m³/hr).

- In some occasion potential fractures were also encountered beyond 150 m depth. The well has yielded copious amount of discharge e.g. Simdega (10.80 m³/hr), Bansjor (35.50 m³/hr) and Gangu Toli (21.38 m³/hr).
- At Kolebira well drilled at 83.62 m yielded discharge of 72 m³/hr with peizometeric head 0.30 magl.

2.1.3 Ground Water Dynamics

2.1.3.1 Water Level Scenario – Aquifer – I (Shallow Aquifer): Water level scenario of shallow aquifer was generated by utilizing water level data of 42 monitoring wells representing shallow aquifer. The pre monsoon (May/June 2021) depth to water level monitored between 2.20 to 10.85 mbgl. The post monsoon depth to water level (Nov. 2021) in the dug wells ranges from 0.64 to 7.47 mbgl. Pre and post monsoon depth to water level maps were prepared for the year 2021 and presented in figure – 6& 7.

Figure – 6: Pre monsoon depth to water level map of Simdega district (May 2021)

Figure – 7: Post monsoon depth to water level map of Simdega district (Nov. 2021)

2.1.3.2 Water level fluctuation: Seasonal ground water level fluctuation in shallow aquifer was studied with the help of 42 key wells which were monitored four times in different seasons during the year 2021. Any decline in water level in the dry and lean period is immediately restored with the onset of monsoon precipitation. Depletion of water in the ground water reservoir is replenished and thus the annual cycle of decline and rise of water level is maintained through time. The seasonal rise of water level varies from place to place. The seasonal water level fluctuation between pre and post monsoon period for the year 2021 observed between 0.85 to 6.15 m in the district. Seasonal water level fluctuation map between pre monsoon (May/June 2021) and post monsoon (November 2021) has been prepared and presented in figure – 8.

2.1.3.3 Last ten years long term water level trend (2012 – 2021): In order to study long term behaviour of the water levels and also the effect of various developmental activities with time, the data for the period 2012 - 2021 have been computed ,analyzed and presented in table - 6. The post monsoon water level trend analysis showing rising trend in 90% wells. It may be due to extraction of ground water from dug well is very less because sufficient availability of hand pumps in recent years. The dug well was main source for ground water extraction 20 - 30 years back.

Sr. No.	Location	Water level trend (m/year)				
		Pre me	onsoon	Post monsoon		
		Rise	Fall	Rise	Fall	
1	Bano	0.1798		0.1718		
2	Biru		0.0230	0.0708		
3	Bolba			0.1233		
4	Jaldega	0.2622		0.0894		
5	Kereya			0.1739		
6	Kolebira		0.0462		0.0436	
7	Lachragarh		0.1476	0.0473		
8	Lomboi			0.0091		
9	Tengratuku			0.0122		
10	Thethaitangar	0.3983		0.0375		

2.1.3.4 Hydrograph Analysis: Analysis of twelve (12) hydrograph network stations, were carried out using GEMS software (Figure - 9 a-I) and analysed for the period from 2012-2021. It is observed that the long-term water level trends during pre monsoon seasons are declining trend in 42% hydrographs of shallow aquifer-I represented by dug wells. Similarly, post monsoon long term water level trend is observed rising trend in the wells located at Bano, Bolba, Kurdeg, Kereya, Jaldega, Lachragar and Thethaitangar while declining trend observed in the wells located at Lomboi, Baribiringa, Tengratuku and Kolebira.

Figure – 9 (a): Hydrograph (2012-2021) of Bano network station

Figure – 9 (c): hydrograph (2012-2021) of Bolba network station

Figure – 9 (e): Hydrograph (2012-2021) of Kereya network station

Figure –9 (g): Hydrograph (2012-2021) of Baribiringa network station

Figure – 9 (h): Hydrograph (2012-2021) of Jaldega network station

Figure – 9 (i): Hydrograph (2012-2021) of Tengratuku network station

Figure – 9 (k): Hydrograph (2012-2021) of Kolebira network station

Figure – 9 (I): Hydrograph (2012-2021) of Thethaitangar network station

2.2 Geophysical survey: 24 VES were carried out under in-house activity during 2007-08 and 2008-09. Similarly, 103 VES were carried out through outsourcing activity during 2021-22 to identified the weather zone resistivity and its thickness as wells as find out deeper fracture zone in hard rock formations.

Outsourcing geophysical survey: 103 VES were carried out through outsourcing activity during 2021-22 to identified the weather zone resistivity and its thickness as wells as find out deeper fracture zone in hard rock formations. Based on the interpreted result of these 103 VES data, 80 VES sites the top weathered zone is very thin which is less than 9.00 m. However, some VES sites weathered zone extends more than 20 m depth.

The range of resistivity i.e. 50 - 150 ohm m at shallow depth (more than 9 m) are considered as semi weathered formation. On the basis of these considerations 26 sites are detected to be semi weathered zone. Based on the curve break techniques and current increase methods, the fractured zones have been delineated at so many sites. Sometimes the resistivity range is found less than 50 ohm m at deeper depth, it may be due to series of fractures. The fracture zones are generally available when the overall resistivity of the curve is little lesser than the very high resistivity. On the basis of these considerations in 45 numbers of VES the fracture zones are detected. Block wise VES carried out and recommendation for drilling is given below in table 7.

Sr.	Name of the	No. of VES	No. of sites	Name of recommended villages	
No.	block	carried out	recommended for		
			drilling		
1	Bano	14	08	Ganjhu Toli, Bano, Gerda, Jorponda,	
				Jhariyadipa, Nimtur, Mahabuang and	
				Hatinghorhe.	
2	Bansjor	05	03	Lodhopara, Koydega and Bansjor.	
3	Bolba 06		02	Kadopani and Belkuba.	
4	Jaldega	08	02	Orga and Hutubda.	
5	Kersai	06	05	Keundkasa, Saraitola, Sagjori,	
				Lachragarh and Jatahdatoli.	
6	Kolebira	14	04	Agharma, Salangapani, Barwadih and	
				Bandarchua.	
7	Kurdeg	06	04	Khulumunda, Ghagmundatoli, Sogsoga	
				and Baha.	
8	Pakartarn	10	03	Hardibera, Sogru and Kochedega.	
9	Simdega	12	06	Katukona, Tamra, Biru, Gotra,Bangru	
				and Samtoli.	
10	Thethaitangar	22	08	Pandripani, Mundratoli, Bambkalbera,	
				Meromdega, Demchutoli, Konmenjra,	
				Thethaitangar and Marumora.	
Total		103	45		

Table – 7: Block wise VES carried out and recommendation for drilling in Simdega district

On the perusal of table – 25, it is observed that the about 44% of VES sites have been recommended for drilling. The secondary porosity fractured zone has developed moderately in the district. Water bearing deeper fracture zones are limited and their yield may varies from poor to moderate.

2.3 Ground Water Exploration: To assess the potentiality of the deep fractured rock 10 exploratory wells and 07 observation wells were drilled in Simdega district by Central Ground Water Board. In addition, 15 exploratory wells and 03 observation wells have been constructed by outsourcing drilling. The drilling results have indicated that granite gneiss of different shades varying from grey to dark grey to pink, having course grained texture sometime porphyritic, are the most dominant rock types met in the area. In the bore wells upper weathered zones are cased and only the fractured zones are tapped in the uncased well. The details of the exploratory and observation wells drilled in Simdega district are presented in annexure – IV and available lithologs of these wells are represented in Annexure – V. Summary of success bore wells drilled by Central Ground Water Board in the district is given in table – 9.

Based on the exploratory well data, it is observed that one to three sets of fractures have been encountered in the bore wells drilled in Simdega district. Based on morphotectonic analysis and exploratory drilling results, it confirms that the area has undergone several phases of tectonic deformations which lead to various sets of fractures, fissures, and faults etc which are ground water repositories. Various sets of fractures have been identified, on ground water point of view. The shallow fractured aquifers upto the depth of 100 m and deep fractured aquifer exist upto 193.00 mbgl within the explored depth of 201.00 m. The following are the summarisaed results of Aquifer Test in exploratory wells in Simdega district

Sr. No.	Location	Block	Discharge (m ³ /day)	Drawdown (m)	T (m²/day)	S
1	Kolebira	Kolebira	354.24	2.60	20.40	0.012
2	Lachragarh	Kolebira	324.00	30.88	3.66	
3	Joram	Thethaitangar	872.64	24.12	46.91	
4	Padripani	Thethaitangar	313.63	40.37	3.27	
5	Tutikel	Kolebira	432.00	7.30	193.19	0.00094
6	Gangu Toli	Jaldega	432.00	38.58	51.77	0.0000052
7	Bansjor	Bansjor	606.53	13.32	154.46	0.000027

Table – 8: Summarized result of APT

Based on Aquifer Parameters evaluation in the district, Transmissivity value of deep fractured aquifer is found to be between 3.27 to 193.19 m²/day. High value of Transmissivity correlates to tensile fracture system. The Storage co-efficient value ranging from 1.20×10^{-2} to 5.20×10^{-6} which indicates semi-confined to confine aquifer system in the district.

2.4 Ground Water Quality:

The quality of water plays prominent role in promoting both the standards of agriculture production and human health. To evaluate the quality of ground water, samples have been collected from 42 dug wells and 42 representatives bore wells (hand pumps). The analytical results of water samples dug wells and hand pumps are given in Annexure- VI and VII respectively. The ground water samples were analyzed for major chemical constituents by using standard procedure at chemical laboratory in CGWB, MER, Patna. These samples have been considered to assess the chemical quality of ground water and its suitability for drinking and irrigational purposes. Since the samples are collected from the dug wells, they represent the quality of Aquifer I (phreatic/ shallow zone) and the bore well samples represent the Aquifer II (deeper zone) quality of ground water.

2.4.1 General range of chemical parameter of Aquifer-I in the area: - Evaluation of ground water suitability in relation to its different purposes has been classified for drinking / domestic and irrigation. Water is very essential for life. Many a times it has raw consumption or indirectly (in food). Hence, it should be free from turbidity, odor, bacterial and poisonous contents and also chemically soft, low T.D.S value and other chemical constituents should range within low to tolerable limits. Excessive and longer use of water beyond these limits may endanger too many health problems.

The distribution of different constituent in ground water can be described as follows:-

Hydrogen ions activity:

It is expressed in terms of pH and shows the acidity & basicity of the solution. Natural water reacts with H+ & H- ions and forms H_3O or ions. The recommended limit (6.5 to 8.5) by BIS, 2012 is base on taste, corrosion and scale formation criteria. The pH value in Aquifer-I ranges from 6.67 to 7.84.

Electrical Conductivity:

Generally, the water's electrical conductivity increases in the dry periods because of evaporation and decreases in the rainy days because of the precipitation and also to the surface runoff flow into reservoir. The EC value in Aquifer-I ranges from 71 to 1307.

Carbonate & bicarbonate:

Naturally occurring carbondioxide is the foremost source of carbonate and bicarbonate ions in ground water along with the carbon cycle and carbonaceous rocks. Leaching of calcite or dolomite bearing rocks (mainly carbonate) is also a principal source of these ions at places. Carbonate content of the area is not detectable. The bicarbonate concentration ranges between 24.60 295.20 mg/l.

Chloride:

The chloride anions in a certain water environment are characterized by a high stability. Thus, the concentration of chlorides shows little change after long flow distance because the dissolution of chloride is greater in water and the reaction between Cl⁻ and other ions in stratum is insignificant. The Chloride concentration ranges between 3.54 to 255.24 mg/l.

Fluoride:

Its low solubility in water makes it different form the rest of halogen family. Fluoride geochemistry is mainly governed by fluoride bearing minerals found in Chotanagpur Gneissic complex. The main sources are fluorite (CaF_2), fluorapatite & other minerals present in rocks contributing the ion in water. The Fluoride concentration ranges between 0 to 1.14 mg/l.

Sulphate:

Sources of sulphate are minerals pyrite (FeS₂), anhydrite (CaSO₄). Under some conditions considerable quantities of sulphate may be obtained from organic Sulphur compounds. The generalized formulae for sulphate reaction ius;

 $SO_4^{2-} + 2CH_2O \rightarrow 2HCO_3^- + H_2S$ The Sulphate value ranges between 5.28 to 63.87 mg/l.

Sodium:

Sources of sodium are halite, sea spray, brines and some silicates. Common sodic silicates include plagioclase. The only common sink for sodium is reverse ion exchange that occurs when highly saline waters come in contact with calcium rich clays.

The Sodium concentration ranges between 1.00 to 133.20 mg/l.
Calcium: In mineral form, it is found as Calcite, aragonite, gypsum, anhydrite, anorthite, diopside etc. The Calcium concentration ranges between 8 to 120 mg/l.

Magnesium:

The most common source of large quantities of magnesium in natural waters is dolomite. Magnesium is also derived from the silicates olivine, pyroxene and amphibole. The main sink is montmomorillonite. The Magnesium concentration ranges between 2.43 to 29.20 mg/l.

Total Hardness:

It is expressed in terms $CaCO_3$ and it is equal to Calcium + Magnesium equivalent per liter. It can be classified as under:-

Hardness range (mg/I CaCO3)-	Class	
0- 60	-	Soft
61-120	-	Moderately hard
121-180	-	Hard
>180	-	Very Hard

In the study area, the total hardness value ranges from 35 to 345 mg/l.

The ground water of shallow aquifers in the area is alkaline in nature. The TDS value observed between 46.15 to 849.55 mg/l. Nitrate concentration found between 0.17 to 33.94 mg/l within the district.

2.4.1.1 Suitability of ground water of Aquifer – I (shallow aquifer) for drinking purposes: - The suitability of ground water for drinking purposes is determined on the basis of drinking water specification adopted by the Bureau of India Standards IS 10500 – 91 Revised 2012 and approved by World Health Organization (WHO). The number of water samples falling under various categories of permissible and desirable limits of various constituents and its percentage are given in table - 9.

Table - 9: Suitability of ground water of Aquifer- I for drinking purposes

Chemical	Ranges Des	irable	No. of	No. of	No. of
constituents	Desirable	Permissible	samples	samples	samples
and quality	limit	limits in the	under	under	under
parameters		absence of	desirable	permissible	excessive
		alternate source	limits	limit	limits
рН	6.5 to 8.5	No relaxation	42 (100%)	Nil	Nil
TDS (ppm)	500	2000	38 (90.48%)	04 (9.52%)	Nil
TH as Caco ₃	200	600	32 (76.19%)	10 (23.81)	Nil
(ppm)					
Ca (ppm)	75	200	35 (83.33%)	07 (16.67)	Nil
Mg (ppm)	30	100	42 (100%)	Nil	Nil

Cl (ppm)	250	1000	41 (97.62%)	01 (2.38)	Nil
SO ₄ (ppm)	200	400	42 (100%)	Nil	Nil
HCO ₃ (ppm)	200	600	33 (78.57%)	09 (21.43)	Nil
NO ₃ (ppm)	45	No relaxation	42 (100%)	Nil	Nil
F (ppm)	1.0	No relaxation	40 (95.24%)	02 (4.76)	Nil

On the perusal of table – 9, all the water samples are filling in desirable to permissible category. The ground water quality of Aquifer– I of the district is very good and suitable for drinking purposes.

2.4.1.2 Suitability of ground water of Aquifer – I for irrigation purposes: - Apart from domestic consumption, irrigation is consuming a major share of ground water for agricultural activities. The quality of water used for irrigation is an important factor in productivity and quality of irrigated crops. The suitability of water for irrigation purpose depends upon the Total Dissolved Solid in terms of EC value, concentration of Na, bicarbonate and its relative proportion to Mg and Ca. All these mentioned above either individual or with combination create concentration of Sodium (salinity) bicarbonate and alkalis type of hazard.

To better understanding the suitability of ground water for irrigation purpose chemical result of collected water samples have been analyzed and described the different classifications.

Sodium Percentage classification: -EC and sodium concentration are very important in classifying irrigation water. The salts, besides affecting the growth of the plants directly, also affect soil structure, permeability and aeration, which indirectly affect plant growth. Sodium is a major ion used for the classification of irrigation water due to its reaction with soil that reduces its permeability. Percentage of Na is generally used for assessing the suitability of water for irrigation purposes. Na is expressed as percent sodium or soluble-sodium percentage (Na %) using Eq.

$$Na \% = \left(\frac{Na^{+} + K^{+}}{Ca^{2} + Mg^{2} + Na^{+} K^{+}}\right) * 100$$

Table- 10: Classification of ground water of Aquifer - I based on sodium percent.

SI No.	Water class or category	Sodium percent	No. of samples falling	Percentage of samples
1	Excellent	< 20 %	10	23.81%
2	Good	20 – 40 %	24	57.14%
3	Permissible	40 – 60 %	8	19.05%
4	Doubtful	30 – 80 %	Nil	Nil
5	Unsuitable	> 80 %	Nil	Nil

(Where all ions are expressed in epm)

On the perusal of table 10, 100 % of water samples of aquifer – I (dug wells) falling under excellent to permissible category.

Sodium adsorption ratio (SAR): -In assessment of the quality of water used for irrigation, sodium adsorption ratio (SAR) is a vital parameter. Enhanced salinity decreases the osmotic activity of plants as well as stops water to reach to the branches and leaves of plants resulting in inferior production. Moreover, irrigation water with high sodium and low calcium favors ion exchange by saturation of Na and is detrimental to the soil structure due to scattering of clay particles resulting in minor production because of difficulty in cultivation. The sodium adsorption ration is calculated from the ionic concentration of Sodium, calcium and magnesium according the following relationship:

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

SAR values can be used to predict the degree to which irrigation water tends to enter into cation exchange section in soil. The higher value of SAR indicates damage of soil. Based on the SAR value the groundwater suitability classification is shown in Table 11 which is showing that all the water samples (100%) of aquifer – I (dug wells) pertain to excellent class.

SI	Water	Type of Water	SAR Value	No. of samples	Percentage of
No.	class			falling	samples
1	Excellent	Low sodium water	< 10	42	100%
2	Good	Medium sodium water	10 - 18	Nil	Nil
3	Fair	High sodium water	18 – 26	Nil	Nil
4	Poor	Very high sodium water	> 26	Nil	Nil

Table -11: - Classification of ground water of Aquifer – I based on SAR value

Residual sodium carbonate content (RSC): -Water containing Co_2 on way gets saturated with Co_2 and forms bicarbonates. The excess bicarbonate of Mg and Ca are precipitated out as carbonates. This produces impermeability to the top soil. Bicarbonate concentration of water has been suggested as additional criteria of suitability for irrigation water. Groundwater samples that had RSC indices of positive value imply that the cumulative concentration of $CO_3^{2^-}$ and $HCO_3^{2^-}$ is higher than the combined Ca^{2^+} and Mg^{2^+} concentrations. This would indicate that there is a residual carbonate to react with sodium, presenting sodium hazard to the soil when irrigated with such water. A negative value indicates no residual carbonate. Residual sodium carbonate is determined by using the formula –

$$RSC = (CO_3^{2-} + HCO_3^{2-}) + (Ca^{2+}) + (Mg^{2+}) \dots \dots$$

(Where concentration is expressed in epm)

SI No.	RSC (mg/l)	Irrigational suitability	No. of samples falling	Percentage of samples
1	< 1.25	Safe for all type of crops	41	97.62 %
2	1.25 – 2.50	Safe for semi-tolerant to tolerant crops	01	2.38%
3	> 2.50	Safe with application of gypsum of the rate of 8.5g/ham of irrigation water applied for 1.0 ml/liter RSC	Nil	Nil

Table- 12: - Classification of ground water of Aquifer – I based on RSC value

(All the values are expressed in epm.)

On the perusal of table 12, about 97.62 % of water samples of aquifer - I falling under safe for all type of crops category and rest 2.38% of water samples falling under safe for semi-tolerant to tolerant crops. Classification of irrigation water Piper's diagram is shown below

Figure – 10: Piper' diagram for shallow water samples of Simdega district

Classification of Ground water

The Piper diagram is used to categorize the type of water. It comprises of three parts: one diamond shaped diagram in the middle and two trilinear diagrams sideways in the bottom. The comparative concentrations of cations (left diagram) and anions (right diagram) in each sample is depicted in the trilinear diagram. For presenting ions in a piper diagram, the cations are clustered into three major divisions: sodium (Na) plus potassium (K), calcium (Ca), and magnesium (Mg). The anions are likewise grouped into three main categories: bicarbonate $(HCO_3^{2^-})$ plus carbonate $(CO_3^{2^-})$), chloride (Cl⁻), and sulfate $(SO_4^{2^-})$. Each sample is denoted by a point in each trilinear diagram. Most of the samples from shallow aquifer fall in the region where alkaline earth's (Ca+HCO₃) exceed alkali metals $(SO_4^2 + Cl)$. This suggests that in the study area shallow aquifer is dominated by Ca-HCO3 type water.

Suitability of ground water based on Electrical Conductivity (EC): - Wilcox 1948 suggested a water class classification for suitability of water for irrigation. The classification is given below as a table- 13.

Sr. No.	Water Class	Rages of EC	No. of samples falling	Percentage of samples
1	Excellent	< 250	12	28.57%
2	Good	250 – 750	26	61.90%
3	Permissible	750 – 2250	04	9.52%
4	Doubtful	2250 - 3000	Nil	Nil
5	Unsuitable	> 3000	Nil	Nil

Table - 13:	- Classification	of ground water	of Aquifer -	I based on electrica	l conductivity (EC)
-------------	------------------	-----------------	--------------	----------------------	---------------------

On The perusal of table 13, about 28.57 % of samples falling under excellent water class and 61.90 % of water samples of Aquifer – I (dug wells) falling under good water class. Rest about 9.52 % of water samples falling under permissible water class.

EC maps of dug well samples i.e. Aquifer – I has been prepared and shown in figures- 10. The values for sodium percentage, SAR, RSC and EC of water samples Aquifer – I collected from dug wells are given in Table – 14.

Plot of sodium percent versus electrical conductivity (after Wilcox 1955) Figure- 11: EC map of Aquifer – I of Simdega district

Sr.	Village	Block	District	Na%	SAR	RSC	EC
No.							
1	Konsode	Bano	Simdega	16.75	0.28	0.01	144
2	Bano	Bano	Simdega	43.08	1.69	0.23	485
3	Lachragarh	Kolebira	Simdega	40.66	1.91	-1.07	721
4	Jaldega	Jaldega	Simdega	32.08	1.61	-2.76	899
5	Bansjor	Bansjor	Simdega	8.977	0.06	-0.19	106
6	Kulamara	Bansjor	Simdega	49.02	2.03	1.33	476
7	Gangu Toli	Jaldega	Simdega	31.94	1.01	-0.18	368
8	Hatinghode	Bano	Simdega	19.63	0.57	-0.97	378
9	Orga	Jaldega	Simdega	32.95	1.04	-1.19	344
10	Gerda	Bano	Simdega	28.75	0.75	-1.57	455
11	Kohipat	Bano	Simdega	37.19	1.50	-2.07	711
12	Nawamile Paro	Bano	Simdega	15.64	0.37	-0.49	269
13	Amba Toli	Kolebira	Simdega	31.19	1.03	-0.89	378
14	Kolomdega	Jaldega	Simdega	26.45	0.48	-0.19	118
15	Lomboi	Jaldega	Simdega	33.11	0.88	-0.19	231
16	Pandripani	Thetaitangar	Simdega	12.97	0.19	-0.49	145
17	Biru	Simdega	Simdega	17.61	0.18	-0.19	218
18	Kolebira	Kolebira	Simdega	47.58	2.09	-1.08	563
19	Putri Toli	Kolebira	Simdega	10.38	0.07	-0.30	71
20	Baribiringa	Jaldega	Simdega	10.9	0.35	-0.25	485
21	Mama Bhagina	Jaldega	Simdega	12.53	0.12	-0.49	151
22	Kereya	Thetaitangar	Simdega	54.74	1.81	0.51	267
23	Devbahar	Thetaitangar	Simdega	42.53	1.24	0.62	258
24	Thethaitangar	Thetaitangar	Simdega	30.48	0.61	0.21	174
25	Taraboga	Thetaitangar	Simdega	23.33	0.62	-1.09	274
26	Koronjo	Bolba	Simdega	24.24	0.81	0.34	487
27	Bolba	Bolba	Simdega	31.41	1.12	-1.57	609
28	Khanda Nishan	Bolba	Simdega	4.25	0.07	-0.66	389
29	Kersai	Kersai	Simdega	46.97	3.20	-3.26	1307
30	Paikpara	Thetaitangar	Simdega	20.93	0.75	-1.37	490
31	Lathakhamhan	Thetaitangar	Simdega	41.24	0.83	0.01	107
32	Simdega	Simdega	Simdega	35.36	1.30	-0.87	456
33	Belgarh	Simdega	Simdega	27.07	0.46	-0.69	321
34	Dumardih (Bhelwa Toli)	Kurdeg	Simdega	36.69	1.21	0.73	376
35	Kurdeg	Kurdeg	Simdega	23.11	0.75	-0.37	413
36	Gariyajor	Kurdeg	Simdega	23.91	1.12	-2.05	936
37	Kinkel	Kersai	Simdega	22.55	0.85	-1.16	618
38	Banabira	Simdega	Simdega	29.62	0.61	-0.29	195
39	Sewai	Simdega	Simdega	25.01	1.17	-1.62	860
40	Ludi Bahar	Simdega	Simdega	25.97	0.98	-0.26	563
41	Kobang	Pakartarn	Simdega	35.11	1.25	-0.67	468
42	Kurushkela	Simdega	Simdega	24.25	0.40	-0.30	118

Table - 14: Values of Sodium percentage, SAR, RSC and EC of water samples collected from Aquifer – I (Dug wells) Simdega district.

2.4.2 General range of chemical parameter of Aquifer - II in the area: - The variation range of the concentration in ppm of different chemical constituents and quality parameters of Aquifer - II (hand pumps samples) represented in tables 15.

Chemical Constituents and	Ranges	of the
quality parameters	concentration	n(in ppm)
рН	6.77	7.70
EC (micro siemens/cm at 25 [°] c)	133	1127
TDS (ppm)	86.45	732.55
TH as CaCo₃ (ppm)	55	500
Ca (ppm)	12	160
Mg (ppm)	1.22	30.40
Na (ppm)	4.59	68.72
K (ppm)	0.21	19.13
HCO₃ (ppm)	61.50	393.60
Cl (ppm)	3.54	113.44
SO ₄ (ppm)	6.33	63.9
NO ₃ (ppm)	0	29.10
F (ppm)	BDL	3.87

Table- 15: Ranges of chemical constituents of Aquifer - II in Simdega district (hand pump samples)

The ground water of aquifer - II in the area is alkaline in nature. On the perusal of table - 19, the pH value ranges 6.77 to 7.70 mg/l. The EC value ranges between 133 to 1127 mg/l. Overall in the district, the TDS value varies from 86.45 to 732.55 mg/l. and the total hardness ranges between 55 to 500 mg/l. Calcium and Magnesium values varies from 12 to 160 mg/l and 1.22 to 30.40 mg/l respectively. Similarly, the Nitrate value ranges from 0 to 29.10 mg/l while Fluoride value found between 0 to 3.87 mg/l.

2.4.2.1 Suitability of ground water of Aquifer – II (deeper aquifers) for drinking purposes: - To know the ground water quality of Aquifer - II, water samples were collected from bore wells (Hand pump). The number of water samples falling under various categories of permissible and desirable limits of various constituents and its percentage are given in table - 16.

Chemical	cal Ranges Desirable No.		No. of	No. of	No. of
constituents	Desirable	Permissible	samples	samples	samples
and quality	limit	limits in the	under	under	under
parameters		absence of	desirable	permissible	excessive
		alternate	limits	limit	limits
		source			
рН	6.5 to 8.5	No relaxation	42 (100%)	Nil	Nil
TDS (ppm)	500	2000	39 (92.86%)	03 (7.14%)	Nil
TH as Caco ₃	200	600	35 (83.33%)	07 (16.67)	Nil
(ppm)					
Ca (ppm)	75	200	36 (85.71%)	06 (14.29%)	
Mg (ppm)	30	100	40 (95.24%)	02 (4.76%)	
Cl (ppm)	250	1000	42 (100%)	Nil	Nil
SO ₄ (ppm)	200	400	42 (100%)	Nil	Nil
HCO ₃ (ppm)	200	600	35 (83.33%)	07 (16.67)	Nil
NO₃ (ppm)	45	No relaxation	42 (100%)	Nil	Nil
F (ppm)	1.0	No relaxation	30 (71.42%)	06 (14.29%)	06 (14.29%)

Table - 16: Suitability of ground water of Aquifer- II for drinking purposes

On the perusal of table – 16, it is observed that about 100% ground water samples of aquifer – II falling under desirable limits to permissible limits category except Fluoride. The Fluoride value is found beyond permissible limit in 06 samples (14.29%). Overall, the ground water quality of Aquifer – II of the district is good and suitable for drinking purposes.

2.4.2.2 Suitability of ground water of Aquifer – II for irrigation Purposes: To better understanding the suitability of ground water for irrigation purpose chemical result of collected water samples have been analyzed and described the different classifications.

Sodium Percentage classification: - Sodium content is usually expressed estimated using the formula –

Sodium percent = $\left(\frac{Na^{+}+K^{+}}{Ca^{2+}+Mg^{2+}Na^{+}K^{+}}\right) * 100$

SI No.	Water class or category	Sodium percent	No. of samples falling	Percentage of samples			
			- 0				
1	Excellent	< 20 %	09	21.43%			
2	Good	20 – 40 %	30	71.43%			
3	Permissible	40 - 60 %	03	7.14%			
4	Doubtful	30 – 80 %	Nil	Nil			
5	Unsuitable	> 80 %	Nil	Nil			

Table- 17: Classification of ground water of Adulter - II based on Na%	Table-	17:	Classification	of ground	water of	Aquifer -	- II based	on Na%
--	--------	-----	----------------	-----------	----------	-----------	------------	--------

(Where all ions are expressed in lpm or epm)

From Table 17, about 21.43 % of water samples of aquifer – II falling in excellent water class. About 71.43 % of water samples falling in good water class. Only 7.14 % of water sample (03 No.) falling under permissible category.

Sodium adsorption ratio (SAR): - The sodium adsorption ration is calculated from the ionic concentration of Sodium, calcium and magnesium according the following relationship:

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

Ground water classification into four classes based on SAR value is given in table- 18 which is showing that all the water samples (100%) of aquifer - II falling under excellent water class.

SI	Water	Type of Water	SAR Value	No. of samples	Percentage
No.	class			falling	of samples
1	Excellent	Low sodium water	< 10	42	100%
2	Good	Medium sodium water	10 - 18	Nil	Nil
3	Fair	High sodium water	18 – 26	Nil	Nil
4	Poor	Very high sodium water	> 26	Nil	Nil

Table - 18: - Classification of ground water of Aquifer – II based on SAR value

(Where all ions expressed in lpm)

Residual sodium carbonate content (RSC): Residual sodium carbonate is determined by using the formula

$$RSC = (CO_3^{2-} + HCO_3^{2-}) + (Ca^{2+}) + (Mg^{2+}) \dots \dots$$

(Where concentration is expressed in epm)

Table - 19: - Classification of ground water of Aquifer – II based on RSC value

SI No.	RSC (mg/l)	Irrigational suitability	No. of samples falling	Percentage of samples
1	< 1.25	Safe for all type of crops	42	100 %
2	1.25 – 2.50	Safe for semi-tolerant to tolerant crops	Nil	Nil
3	> 2.50	Safe with application of gypsum of the rate of 8.5g/ham of irrigation water applied for 1.0 ml/liter RSC	Nil	Nil

(All the values are expressed in lpm or epm)

On the perusal of table - 19, 100 % of water samples of aquifer - II falling under safe for all type of crops category. Classification of irrigation water modified Piper's diagram is shown below in figure – 11.

Figure – 12: Piper' diagram for deeper water samples of Simdega district

Piper diagram revealed that 64% belong to calcium-bicarbonate (Ca-HCO3) hydrochemical facies. This suggests that in the study area deeper aquifer is dominated by Ca-HCO3 type water.

Suitability of ground water based on Electrical Conductivity (EC): - Wilcox 1948 suggested a water class classification for suitability of water for irrigation. The classification is given below as a table - 20.

SI No.	Water Class	Rages of EC	No. of samples falling	% of samples
1	Excellent	< 250	15	35.71%
2	Good	250 – 750	23	54.76%
3	Permissible	750 – 2250	04	9.52%
4	Doubtful	2250 - 3000	Nil	Nil
5	Unsuitable	> 3000	Nil	Nil

Table - 20: - Classification of ground water of Aquifer - II based on (EC)

On The perusal of table 20, about 35.71 % of samples falling under excellent water class and 54.76 % of water samples of Aquifer – II (dug wells) falling under good water class. Rest about 9.52 % of water samples falling under permissible water class.

EC maps of dug well samples i.e. Aquifer – II has been prepared and shown in figures- 12. The values for sodium percentage, SAR, RSC and EC of water samples of Aquifer – II collected from hand pumps are given in table – 21.

Plot of sodium percent versus electrical conductivity (after Wilcox 1955) Figure- 13: EC map of Aquifer – II of Simdega district

Sr. No.	Village	Block	District	Na%	SAR	RSC	EC
1	Konsode	Bano	Simdega	19.82	0.48	-0.09	226
2	Bano	Bano	Simdega	23.01	0.56	0.01	216
3	Lachragarh	Kolebira	Simdega	15.44	0.64	-3.26	752
4	Jaldega	Jaldega	Simdega	34.37	0.96	0.42	297
5	Bansjor	Bansjor	Simdega	36.91	1.24	0.52	387
6	Kulamara	Bansjor	Simdega	22.52	0.77	-1.77	523
7	Gangu Toli	Jaldega	Simdega	16.96	0.50	-0.77	411
8	Hatinghode	Bano	Simdega	14.34	0.46	-0.86	523
9	Orga	Jaldega	Simdega	25.47	0.78	-1.39	364
10	Gerda	Bano	Simdega	7.549	0.15	-0.77	358
11	Kohipat	Bano	Simdega	17.15	0.45	-0.67	393
12	Nawamile Paro	Bano	Simdega	22.10	0.54	-0.08	268
13	Amba Toli	Kolebira	Simdega	48.98	1.17	0.41	143
14	Kolomdega	Jaldega	Simdega	27.82	0.55	0.01	166
15	Lomboi	Jaldega	Simdega	25.04	0.76	0.03	365
16	Pandripani	Thetaitangar	Simdega	29.49	1.02	-0.57	446
17	Biru	Simdega	Simdega	41.29	1.10	-0.29	209
18	Kolebira	Kolebira	Simdega	38.78	1.80	-0.45	921
19	Putri Toli	Kolebira	Simdega	30.78	0.55	0.11	152
20	Baribiringa	Jaldega	Simdega	13.95	0.45	0.04	540
21	Mama Bhagina	Jaldega	Simdega	36.06	1.16	-0.28	370
22	Kereya	Thethaitangar	Simdega	35.13	1.22	0.22	417
23	Devbahar	Thethaitangar	Simdega	31.64	0.90	0.02	260
24	Thethaitangar	Thethaitangar	Simdega	26.61	0.92	-0.57	470
25	Taraboga	Thethaitangar	Simdega	32.08	0.75	0.11	201
26	Koronjo	Bolba	Simdega	32.61	0.91	0.42	266
27	Bolba	Bolba	Simdega	28.11	1.05	-0.87	552
28	Khanda Nishan	Bolba	Simdega	30.62	0.79	-0.09	280
29	Kersai	Kersai	Simdega	38.21	1.01	-0.39	187
30	Paikpara	Thethaitangar	Simdega	33.81	1.11	-0.18	380
31	Lathakhamhan	Thethaitangar	Simdega	30.3	1.06	0.04	454
32	Simdega	Simdega	Simdega	29.70	0.65	-0.19	169
33	Belgarh	Simdega	Simdega	32.87	0.64	0.11	133
34	Dumardih (Bhelwa	Kurdeg	Simdega	31.51	0.64	0.11	169
	Toli)						
35	Kurdeg	Kurdeg	Simdega	25.71	0.74	-0.28	336
36	Gariyajor	Kurdeg	Simdega	13.42	0.65	-3.53	1127
37	Kinkel	Kersai	Simdega	11.55	0.48	-3.96	821
38	Banabira	Simdega	Simdega	41.72	0.94	0.12	152
39	Sewai	Simdega	Simdega	26.71	1.15	-1.26	682
40	Ludi Bahar	Simdega	Simdega	27.03	0.64	-0.48	204
41	Kobang	Pakartarn	Simdega	31.28	0.76	-0.49	210
42	Kurushkela	Pakartarn	Simdega	21.62	0.41	-0.19	157

Table - 21: Values of Sodium Percentage, SAR, RSC AND EC of water samples collected from Aquifer – II (Hand pumps), Simdega district

3. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

The data collected and generated on various parameters viz., water levels, water quality, exploration, aquifer parameters, geophysical, hydrology, hydrometeorology, irrigation, thematic layers was interpreted and integrated. Based on this the various aquifer characteristic maps on hydrogeology, aquifer wise water level scenario both current and long term scenarios, aquifer wise ground water quality, 2-D and 3-D sub surface disposition of aquifers by drawing fence and lithological sections, aquifer wise yield potential, aquifer wise resources, aquifer maps were generated which has been discussed in details.

3.1 Aquifer Disposition

3.1.1 Hydrogeological Cross Section: To study the aquifer disposition in detail, various hydrogeological cross section indicating aquifer geometry has been prepared viz. A-A' (south west – north east direction in middle part), B-B' (west – east direction in middle part) and C-C' (west - east direction middle to northern part).

3.1.1.1 Hydrogeological cross section A-A': Hydrogeological cross section A-A' represents the area in SW – NE direction in portion of the district. The data of 5 exploratory wells i.e. Auga, Taraboga, Pandripanii, Tutikel and Kuladurum have been utilised. The Aquifer- I ranges 9.00 – 23.89 m representing weathered Granite Gneiss, while Aquifer-II ranges from 18.00 – 136.00 m representing fractured Granite Gneiss. Generally 1- 2 fracture zones were encountered. Location map of cross section is shown in figure – 14. Hydrogeological cross section of A-A' is shown in figure- 15.

Figure – 14 : Location map of cross section

Figure – 15 : Hydrogeological cross section along A – A'

3.1.1.2 Hydrogeological cross section B – B': Hydrogeological cross section B-B' represents the area in central part of Simdega district. The data of 4 exploratory wells i.e. Keslaitoli, Pakartarn, Simdega2, Lomboi and Binjhiyapani have been utilised. The Aquifer- I ranges 5.50 - 18.31 m representing weathered Granite Gneiss, while Aquifer-II ranges from 11.50 - 182.50 m representing fractured Granite Gneiss. Generally 1 - 2 fracture zones were encountered. However, this section well yield varies from 0.13 - 3.00 lps. Hydrogeological cross section of B-B' is shown in figure - 16.

Figure – 16: Hydrogeological cross section along B – B'

3.1.1.3 Hydrogeological cross section C – C': Hydrogeological cross section C-C' represents the area in central part of Simdega district. The data of 6 exploratory wells i.e. Paledih, Pakartarn, Kolebira, Tutike, Lachragarh and Banki have been utilised. The Aquifer-I ranges 5.50 - 18.31 m representing weathered Granite Gneiss, while Aquifer-II ranges from 15.00 - 131.50 m representing fractured Granite Gneiss. Generally 1 - 2 fracture zones were encountered. However, this section well yield varies from 0.13 - 25.00 lps. Hydrogeological cross section of B-B' is shown in figure - 17

Figure – 17: Hydrogeological cross section along C – C'

3.1.2 2-D & 3-D and Aquifer Disposition: The 3-D map in hard rock area of the district showing spatial disposition and vertical extent of Aquifer-I indicating its depth of weathering while the Aquifer – II showing occurrence of fractured rock thickness is presented in **figures – 13**. Based on the drilling data of exploratory wells maximum thickness of Aquifer - I (weathered zone) in **hard rock area** is 25.0 m. The depth of Aquifer – II (fracture zone) ranges from 11.00 to 182.50 mbgl.

Figure – 18: 3D subsurface lithological models with Aquifer Disposition in hard rock areas of Simdega district

3.2 Aquifer Characteristics: - The sustainability of ground water Resources is better understood by the aquifer properties. The Table - 22 depicts the aquifer parameters details in Simdega district. The aquifer performance tests conducted at various exploratory wells reveal that aquifers can sustain to sufficient pumping hours and can give sustained yield with normal draw down.

Type of aquifer	pe of Formation Depth SWL range of (mbgl)		Thickness (m)	Yield (m³/hr)	Aquifer parameter			
		the aquifer					T (m²/day)	Sy /S
	(r		Pre Monsoon	Post Monsoon			(m/aay)	
			(2021)	(2021)				
Aquifer - I	Weathered	5.00 -	2.20 -	0.64 –	1- 10	Upto 10		
	Granite	30.00	10.85	7.47				
	gneiss							
Aquifer - II	Fractured	9.00 –			0.50 –	0.47 –	3.27 –	0.0000052
	Granite	182.50			6.50	72.00	193.19	- 0.012
	gneiss							

Table 22: Aquifer characteristics of Simdega district

3.3 Aquifer Map: Based on Aquifer Disposition, Aquifer Geometry, Aquifer Characteristics, Aquifer Maps in Simdega district have been prepared as under

Fig:19 Aquifer Maps, Simdega district, Jharkhand

4. GROUND WATER RESOURCE

Ground Water Resource of the area has been estimated block wise based on for base year as on 31st March-2020. In the present report GEC 2015 methodology has been used and based on the assessment has been made using appropriate assumptions. This methodology recommends aquifer wise ground water resource assessment of both the Ground water resources components, i.e., Replenishable ground water resources or Dynamic Ground Water Resources and In-storage Resources or Static Resources. The assessment of ground water includes assessment of dynamic and in-storage ground water resources, but the development planning should mainly depend on dynamic resource only as it gets replenished every year. Changes in static or in-storage resources reflect impacts of ground water mining. Such resources may not be replenishable annually and may be allowed to be extracted only during exigencies with proper recharge planning in the succeeding excess rainfall years.

4.1 Assessment of Annually Replenishable or Dynamic Ground Water Resources (Unconfined Aquifer i. e Aquifer-I)

The methodology for ground water resources estimation is based on the principle of water balance as given below –

Inflow – Outflow = Change in Storage (of an aquifer)

The equation can be further elaborated as

ΔS= RRF+RSTR+RC+RSWI+RGWI+RTP+RWCS±VF ± LF -GE-T-E-B

Where,

 Δ S – Change is storage, RRF – Rainfall recharge, RSTR- Recharge from stream channels

RC – Recharge from canals, RSWI – Recharge from surface water irrigation

RGWI- Recharge from ground water irrigation, RTP- Recharge from Tanks& Ponds

RWCS – Recharge from water conservation structures, VF – Vertical flow across the aquifer system, LF- Lateral flow along the aquifer system (through flow), GE-Ground Water Extraction, T- Transpiration, E- Evaporation, B-Base flow

The dynamic Ground Water Resources has been assessed by CGWB, SUO, Ranchi in association with State Ground Water Directorate, Jharkhand based on GEC, Methodology 2015. The summarized detail of Annually Replenishable or Dynamic Ground Water Resources of Simdega district is in Table-23.

S. No.	Items	
1	Area in ha	375229
2	Annual Extractable Ground Water Recharge in ham	21416.22
3	Current Annual Ground Water Extraction for irrigation in ham	1807
4	Current Annual Ground Water Extraction for domestic in ham	840.77
5	Current Annual Ground Water Extraction for industrial in ham	0
6	Current Annual Ground Water Extraction for All uses in ham	2647.78
7	Annual GW Allocation for Domestic Use as on 2025 in ham	846.62
8	Net Ground Water Availability for future use in ham	18762.58
9	Stage of Ground Water Development (%)	12.08

Table-23: Dynamic Ground Water Resources of Simdega district (As on 31st March -2020)

4.1.1 Recharge Component: During the monsoon season, the rainfall recharge is the main recharge parameter, which is estimated as the sum total of the change in storage and gross draft. The change in storage is computed by multiplying groundwater level fluctuation between pre and post monsoon periods with the area of assessment and specific yield. Monsoon recharge can be expressed as:-

 $R = h \times Sy \times A + DG$

Where,

h = rise in water level in the monsoon season, Sy = specific yield

A = area for computation of recharge, DG = gross ground water draft

The monsoon ground water recharge has two components- rainfall recharge and recharge from other sources. The other sources of groundwater recharge during monsoon season include seepage from canals, surface water irrigation, tanks and ponds, ground water irrigation, and water conservation structures. During the non-monsoon season, rainfall recharge is computed by using Rainfall Infiltration Factor (RIF) method. Recharge from other sources is then added to get total non-monsoon recharge.

The season wise assessment of recharge from various components such as rainfall and other sources was done and presented in table - 24 and figure - 20. The recharge from rainfall contributes maximum component 21266.69 ham during monsoon season and recharge from other sources is 548.75 ham, whereas during non-monsoon season, recharge from rainfall is 837.59 and the recharge from other sources is 586.73 ham. The total annual ground water recharge is 23239.76 ham and total natural discharge is 1823.54 ham. Annual extractable ground water resource after natural discharge is estimated as 21416.22 ham.

Block	Recharge	Recharge	Recharge	Recharge	Total	Total Natural	Annual
	from	from other	from	from other	annual	Discharges	Extractable
	rainfall	sources	rainfall	sources	ground	(ham)	Ground Water
	during	during	during non	during non	water		Resource
	monsoon	monsoon	monsoon	monsoon	recharge		(ham)
	season	season	season	season	(ham)		
	(ham)	(ham)	(ham)	(ham)			
Bano	3116.4	55.46	128.3	54.13	3354.29	167.71	3186.58
Bansjor	880.45	16.31	36.88	10.18	943.6	94.36	849.24
Bolba	1126.63	41.42	46.91	55.58	1270.54	127.06	1143.48
Jaldega	2291.86	50.87	95.42	39.48	2477.63	247.76	2229.87
Kersai	1046.49	23.30	43.57	25.63	1138.99	113.9	1025.09
Kolebira	2714.48	53.24	103.36	78.33	2949.41	147.47	2801.94
Kurdeg	1100.57	53.87	45.82	39.82	1240.08	124	1116.08
Pakartarn	1728.77	28.01	71.98	31.19	1859.95	186	1673.95
Simdega	3445.63	67.25	106.71	85.26	3704.85	185.24	3519.61
Thethaitangar	3815.41	159.02	158.86	167.13	4300.42	430.04	3870.38
Total	21266.69	548.75	837.59	586.73	23239.76	1823.54	21416.22

Table – 24: Recharge	e Components ev	aluated for Resource	Estimation: Sim	dega district
----------------------	-----------------	----------------------	------------------------	---------------

Figure – 20: Recharge from various sources

4.1.2 Ground Water Availability, Draft and Stage of GW development

The utilization of available ground water resources for various purposes is provided in table – 25 (As on 31st March 2020). The annual gross draft for all uses is estimated at 2647.78 ham with domestic sector being the major consumer having a draft of 840.75 ham. The annual draft for irrigation use was estimated 1807 ham. The allocation of net ground water available for future use is 18762.58 ham. The stage of ground water development is very low i.e., 12.08%.

Figure – 21: Net GW Availability & Draft of Simdega district (2020)

2020)							
Assessment	Annual	Ground	Ground	Ground	Total	Net Ground	Stage of
Units (block)	Extractable	Water	Water	Water	Extraction	Water	Ground
	Ground	Extraction	Extraction	Extraction for	for all uses	Availability for	Water
	Water	for Irrigation	for	Industrial Use		future use	Extraction
	Resource	Use	Domestic				(%)
	(Ham)		Use				
	(ham)	(ham)	(ham)	(ham)	(ham)	(ham)	(%)
Bano	3186.58	113	106.17	0	219.17	2966.68	6.88
Bansjor	849.24	4.5	33.67	0	38.18	810.82	4.50
Bolba	1143.48	176	40.62	0	216.63	926.56	18.94
Jaldega	2229.87	242.5	84.83	0	327.33	1901.95	14.68
Kersai	1025.09	51.5	51.75	0	103.25	921.48	10.07
Kolebira	2801.94	274.5	94.06	0	368.57	2432.71	13.15
Kurdeg	1116.08	125.5	63.32	0	188.82	926.82	16.92
Pakartarn	1673.95	64	49.49	0	113.49	1560.11	6.78
Simdega	3519.61	250	201.43	0	451.43	3066.78	12.83
Thethaitangar	3870.38	505.5	115.41	0	620.91	3248.67	16.04
Total	21416.22	1807	840.75	0	2647.78	18762.58	Avg. 12.08

Table – 25: Block wise dynamic ground water resource of Simdega district (As on 31st March 2020)

4.2 Assessment of In-Storage Ground Water Resources or Static Ground Water Resources (Unconfined Aquifer i.e Aquifer-I)

The computation of the static or in-storage ground water resources is done after delineating the aquifer thickness and specific yield of the aquifer material.

The computations can be done as follows:-

SGWR = A *(Z2 - Z1) * SY

Where, SGWR = Static or in-storage Ground Water Resources

A = Area of the Assessment Unit, Z2 = Bottom of Unconfined Aquifer, Z1 = Pre-monsoon water level, SY = Specific Yield in the In storage Zone

For Aquifer I in hard rock area of Simdega di	strict
---	--------

AQUIFER I						
Area (A) (sq. km)	3090.60					
Pre-monsoon (average) depth to water level (mbgl) (Z1)	6.01					
Bottom of Unconfined Aquifer (mbgl) (Z2)	14.36					
Specific yield (Sy)	3%					
Saturated zone thickness (Z2-Z1) of aquifer (ST)	8.35					
SGWR = A *(Z2 - Z1) * SY	774.20 mcm					

4.3 Assessment of Total Ground Water Availability in Unconfined Aquifer (Aquifer-I)

The sum of Annual Extractable Ground Water Recharge and the in - storage ground water Resources of an unconfined aquifer are the Total Ground Water Availability of that aquifer. Total Availability (unconfined Aquifer. i.e Aquifer-I) = Annual Extractable Ground Water Recharge + In-Storage Ground Water Resource

Total Availability (mcm) = 214.16 mcm +774.20 mcm = 988.36 mcm.

5. GROUND WATER RELATED ISSUES

Agriculture is the major occupation of the rural population of the Simdega district. About 95% population of the district is living in rural areas and depends on agriculture. Since the density of population is high there is acute pressure on land for agriculture use. But the land available for cultivation is limited because of rugged and hilly geomorphological set-up. The district of Simdega is mainly a dissected upland of ancient crystalline rocks which covers the major parts of this district.

Ground water conditions in crystalline rocks are generally considering to be poor because of the absence of two basic parameters i.e. porosity and permeability which are essential for the occurrence and movement of ground water in any rock type. Weathering aided by joints and fractures breaks down the original composition and texture of rocks producing pore spaces, hence imparting the secondary porosity and permeability. So due to the development of these properties even crystalline rocks have become good conduit for the occurrence and movement of ground water. Simdega is one of the most underdeveloped district of Jharkhand especially in the field of irrigation infrastructure (major and medium projects). Ground water resources of this district have to be developed on priority basis for giving a thrust to the agriculture production of this tribal dominated district.

5.1 Low Ground Water Development: One major issue of the area that is low ground water development. At present the overall stage of ground water development is only around 12.08%, based on Ground water resource assessment as on 2020. The Block wise stage of ground water development (SOD) of the district varies from 4.50 to 18.94 percent. Block wise stage of development of the district is shown in figure – 20.

Figure – 22: GW Stage of development in Simdega district

5.2 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability: Central Ground Water Board has constructed 25 exploratory wells in hard area of the district. The percentage of success bore wells (more than 3 lps discharge) is 36% with 24% of dry wells. Average thickness of weathering is 20 m and fracture zone is limited only. Low to medium Transmissivity value observed which varies from 3.27 to 193.19 m²/day of fractured aquifer. The yield of bore wells drilled in the area is classified and presented below in figure – 23.

Figure – 23: Yield wise classification of bore wells drilled in Simdega district

5.3 Ground water contamination: Analytical result of water samples collected from the district, it is found the Fluoride concentration is beyond permissible limit in 06 samples of deeper aquifer (hand pump) and 02 samples of shallow aquifer (dug well). Rest all chemical parameter of shallow and deeper aquifer are found within desirable to permissible limit.

5.3.1 Fluoride contamination: Consumption of water with fluoride concentration above 1.50 mg/l is harmful which results in acute to chronic dental fluorosis where the tooth become coloured from yellow to brown. Skeletal fluorosis which causes weakness and bending of the bones also results due to long term consumption of water containing high fluoride. Presence of low or high concentration of fluoride in groundwater is because of geogenic or anthropogenic causes or a combination of both. Natural sources are associated to the geological conditions of an area. Several rocks have fluoride bearing minerals like apatite, fluorite, biotite and hornblende. The weathering of these rocks and infiltration of rainfall through it increases fluoride concentration in groundwater. Anthropogenic sources of fluoride in irrigation lands. There are several methods available for the removal of fluoride from groundwater which is insitu or exsitu. To dilute the groundwater contaminated with fluoride, artificial recharge structures can be built in suitable places which will decrease its concentration. Rainwater harvesting through existing wells also will prove effective to reduce the groundwater fluoride

concentration. Exsitu methods which are conventional treatment methods like adsorption, ion exchange, reverse osmosis etc can be practiced at community level or at households to reduce fluoride concentration before ingestion.

Sr. No.	Village	Block	Fluoride value (mg/l)					
Du	Dug well samples = Nil							
Hand pump samples = 06 Nos.								
1	Banabira	Simdega	1.69					
2	Simdega	Simdega	1.86					
3	Sewai	Simdega	2.18					
4	Nawamile Paro	Bano	2.30					
5	Paikpara	Thethaitangar	2.59					
6	Lathakhamhan	Thethaitangar	3.87					

Table – 26: Location details of Fluoride concentration found beyond permissible limit in ground water Simdega district

Figure – 22: Sample wise Fluoride concentration of shallow aquifer in Simdega district.

Figure – 25: Sample wise Fluoride concentration deeper aquifer in Simdega district

6. MANAGEMENT STRATEGIES

As discussed in previous chapter, the major ground water related issue in the Simdega is low ground water development owing to many socio-economic and hydrogeological reasons. To overcome these, it is imperative to have a robust ground water resource development plan for the district.

6.1 Supply Side Management : At present as per Ground Water Resource Estimation 2020, the stage of ground water development is very low i.e., 12.08 % and all the block of the district comes under safe category. However in some parts of the district long term declining trend has been noticed. Therefore, the ground water development should also be coupled with ground water augmentation, so that there is no stress on ground water regime of the area. The supply side Management can be done in following ways:

6.1.1 Ground Water Resource Development Strategy: In view of above, the focus of proposed management plan was to enhance the overall ground water development from the present 12.08% to 50%. Total 25016 dug wells (15-20 m depth; 2 to 4 m diameter @ Rs. 3.50 lakh/dug well) are recommended to be constructed in feasible areas. Similarly, 6080 shallow depth bore wells (70 - 100 m depth; 100-150 mm dia @ Rs.1.00 lakh/ bore well) are also recommended to be drilled in feasible areas. Proposed number of abstraction structure based on SOD 50% with future irrigation potential is given below in tables – 27 & 28.

Table – 27: Future Irrigation Potential & Proposed number of Abstraction Structuresbased on SOD 50%

District	Net GW Availability for Future Development (Ham)	future irrigation potential available (ha) considering	50% of future irrigation potential created	Proposed number of ground water structure	Proposed number of ground water structure
		(Δ) 0.45m	(ha)	(Dug wells)	(Bore wells)
Bano	2966.68	6592.62	3296	3955	961
Bansjor	810.82	1801.82	900	1080	263
Bolba	926.56	2059.02	1030	1236	300
Jaldega	1901.95	4226.56	2113	2536	616
Kersai	921.48	2047.73	1024	1229	299
Kolebira	2432.71	5406.02	2703	3244	788
Kurdeg	926.82	2059.6	1030	1236	300
Pakartarn	1560.11	3466.91	1733	2080	505
Simdega	3066.78	6815.07	3408	4090	994
Thethaitangar	3248.67	7219.27	3610	4332	1053
Total	18762.58	41694.6	20847	25016	6080

It is necessary that proposed Additional ground water abstraction structure may be constructed in three phases with proper site selection. The results of the first phase of ground water development together with studies of the behavior of ground water regime will guide further ground water development to achieve 100% utilization.

Block	Type of	Unit draft /	Proposed number	GW balance
	abstraction	command	of ground water	irrigation potential
	structures to	area (nam)	abstraction	created for
	constructed		structures	
Bano	DW	0.5	3955	1977.5
	BW	1.2	961	1153.2
Bansjor	DW	0.5	1080	540
	BW	1.2	263	315.6
Bolba	DW	0.5	1236	618
	BW	1.2	300	360
Jaldega	DW	0.5	2536	1268
	BW	1.2	616	739.2
Kersai	DW	0.5	1229	614.5
	BW	1.2	299	358.8
Kolebira	DW	0.5	3244	1622
	BW	1.2	788	945.6
Kurdog	DW	0.5	1236	618
Kulueg	BW	1.2	300	360
Dakartarn	DW	0.5	2080	1040
Pakarlarn	BW	1.2	505	606
Simdoga	DW	0.5	4090	2045
Sinuega	BW	1.2	994	1192.8
Thothaitangar	DW	0.5	4332	2166
methallangai	BW	1.2	1053	1263.6
Total	DW	0.5	25016	12509
IUlai	BW	1.2	6080	7294.8

Table – 28: Irrigation Potential Created & No. of structure for assured irrigation

6.1.2 Rainwater Harvesting and Artificial Recharge structures

The supply side interventions also envisages construction of Rainwater Harvesting and Artificial Recharge structures in the areas feasible for construction of recharge structures based on the long term water level scenario and recharge potential of the aquifer as well as dilution of ground water contamination such as Fluoride observed in the district. The implementation of water conservation through artificial recharge measures will have a positive impact on drinking

water sources of the area. It will ensure that the wells don't go dry during summer/lean/stress period in the areas of implementation and sufficient ground water availability is there in the wells even during the summer season. Thus not only the drinking and domestic water sources will be strengthened but additional irrigation potential can be created through artificial recharge structures.

Artificial recharge to Ground Water Master plan 2020

Recently in 2020, artificial recharge to Ground Water master plan 2020 of Jharkhand state has been prepared. The area identified for artificial recharge has been made based on post monsoon depth to water level (Nov. 2018) more than 3 m bgl with declining trend of more than 0.1 m/yr (2009 – 2018). In addition, area with water level more than 9 m bgl in the district has been considered for identifying the area. The volume of unsaturated zone available for recharge in identified areas is determined by computation of average depth of the unsaturated zone below 3 m bgl and then multiplied by area considered for recharge. Based on this master plan, feasible artificial recharge structures including roof rainwater harvesting structures are in Table- 29.

	0		0		
Area	Volume of	Total volume of	Proposed numbers of		
identified for	unsaturated	Available	recharge structures (No's)		
artificial recharge (Sq. Km.)	zone available for recharge (MCM	Water for Recharge (MCM)	Percolation Tank	NalaBund/ Check dam / Gully Plug	
65	3.20	3.72	10	62	

Table - 29: Artificial recharge structures feasible in Simdega district.

6.2 Demand side Management:-The demand side intervention envisages the real water savings. The main demand side interventions may be-i) Promote improved irrigation technologies (drip or sprinkler irrigation, etc.), ii) Crop choice management and diversification (promote less intensive crops like pulses and horticulture), iii) Promoting treated municipal waste water for irrigation and construction use, and iv) Managing energy and irrigation nexus (provide quality power supply when needed through separate feeders, high voltage distribution lines, solar pumps, etc.) The government should encourage and provide incentive the use of drip irrigation and sprinkler system.

6.3 Ground water Management Strategy for Fluoride affected areas: Fluoride contamination occurring in granite gneiss of Bano, Simdega and Thethaitangar blocks. Remedial measures recommended for Fluoride affected areas are as follows-

1. Purification/Filtration: Purification/ filtration of Fluoride contaminated ground water by distillation, reverse osmosis or ion exchange etc.

2. Awareness raising Program /Participatory approach: Peoples should aware about the ground water pollution of Fluoride. Management of schemes or project related Fluoride removal should be in hand of local peoples, so that peoples will keep the proper maintenance of machines and equipments.

6.4 Urban water supply: There is one urban area existing in the district namely Simdega. Average 75000 litres water supplies per day for Simdega urban area from Kelaghagh dam which is located about 4 km east - south of Simdega by Drinking Water & Sanitation Department.

6.5 Rural water supply: Drinking Water & Sanitation Department (DWSD), Simdega has constructed large numbers of bore wells to solve the water scarcity problem of the rural area of the district. In addition, numbers of small rural water supply schemes have been implemented by the Drinking Water & Sanitation Department, Simdega in rural area. Block wise number of Rural Water Supply Schemes of Simdega district is given below in table 29.

Block	Water supply schemes							
	RWSS	MRWSS/	SVS	PWSS	Solar	Solar	Other	Remarks
		MRPWSS			based	with	scheme	
					MRPWSS	HYDT		
Bano	1				237			
Bansjor	0				42			
Bolba	1				70			
Jaldega	1				182			
Kersai	2				15			
Kolebira	3				196			
Kurdeg					151			02 nos. WRSS
								under construction
Pakartanr	1				36			01 no. WRSS under
								construction
Simdega	1				161			01 no. WRSS under
								construction
Thethaitangar					215			01 no. WRSS under
								construction
Total	10				1305			05 nos. WRSS
								under construction

Table – 30: Block wise number of Rural Water Supply Schemes of Simdega district

RWSS = Rural Water Supply Schemes

MWSS = Mini Water Supply Schemes

MRPWSS = Mini Rural Pipe Water Supply Schemes

PWSS = Pipe Water Supply Schemes

HYDT = High Yielding Tube well

SVS = Single Village Schemes

7.0 Sum-up

- The district of Simdega located almost the southern parts of Jharkhand state, covering an area of about 3752.29 Sq. Km. The district which acquired the status of an independent district on 30th April, 2001, has a close linkage with the parent district Gumla.
- The district is bounded in the north by the Gumla district, in the east by Ranchi district, in the south by Orissa state and in the west by the Chhatisgarh state. The district is situated between 22⁰ 20' 30" and 23⁰ 50' 15" N latitude and 84⁰ 01' 00" and 85⁰ 04' 30" E longitude. It has one sub division i.e. Simdega Sadar sub division. Further, the sub division is divided into ten blocks namely Simdega, Bano, Jaldega, Kolebira, Kurdeg, Thetaitanger, Pakartanr, Kersai and Bansjor
- The region in Chotanagpur plateau is having large physical inequalities presenting a rich panorama of topographical features. The general configuration of region varies from valley fills, pedeplains, to structural ridges. In the district three well marked erosion surfaces are clearly discernible.
- The district falls in the Agro climatic sub-zone-VI with average annual rainfall 1230.56 mm. The mean monthly temperature range from 4^oC in winter to 42^oC in summer.
- The major part of the district is having dendritic drainage pattern. The district is forming Sankh sub basin of the Brahmni basin. The river Sankh is the main river of the district, which flows north to south direction in the western part of the district. The tributaries of the river Sankh are the Palamara, Girma, Chhinda, Lurgi and Dev rivers. The other important river of the district is the river South Koel which form the eastern boundary of the district.
- Geologically the district of Simdega is mainly underlain by Archaean crystalline rocks which are highly deformed and metamorphosed. Major part of the district is occupied by granite gneiss. Eastern part of the district underlain by phylites and schist.
- In general in fissured formations, discharge of well has been found in the range of 0.50-72.00 m³/hr. Overall in the district the major potential fractures zones are found upto 100 m. First potential fracture zone encountered in the district widely varies from 9 -182 m.
- Ground water occurs in unconfined to semi-confined state in Aquifer-I (upto the depth of 20 m). Yield of the open wells in Aquifer-I is restricted upto 2.5 m³/day in weathered Granite-Gneiss.
- The Chotanagpur granite-gneiss, belonging to Precabmrian age constitutes the group of fissured formation hydrogeological units and to some extent phylites and schists as an Aquifer-II i.e deeper Aquifer in the area. The Potential fractured deeper aquifers (Aquifer-II) in the district have been observed upto 182 mbgl with the yield potential upto 72.00 m³/hr.
- The analysis of aquifer parameters in the district shows that the transmissivity value ranges from $3.27 193.19 \text{ m}^2/\text{day}$. The storativity value also varies from 1.20×10^{-2} to 5.20×10^{-6} , which shows that aquifers are under semi-confined to confined condition.

- Ground Water quality is generally potable, except few patches Fluoride value found beyond permissible limit in 6 samples of hand pump.
- Based on Ground water Resources estimation 2020, the stage of ground water development in Simdega district is 12.08% and the entire block comes under safe category. Therefore there is sufficient scope for further ground water development.
- Three major ground water related issues in Simdega district are low ground water development, low ground water potential and fluoride contamination in the area.
- To suggest a sustainable ground water management plan there are two options-Supply Side Management Options & Demand Side Management Options
- The supply side interventions-I envisages Ground Water Management strategy through construction of 25016 dug wells and 6080 shallow bore wells in the feasible areas in the district to enhance the overall ground water development to 50%. Rain water harvesting and artificial recharge to be encouraged in feasible areas for ground water augmentation. In additional purification/filtration of Fluoride may also be adopted.
- The supply side interventions-II also envisages construction of feasible artificial recharge structures 10 percolation tank, 62 Nala Bund/Check Dam/Gully Plug in 65 sq. km. identified area in Simdega district, which is Based on Artificial recharge to Ground Water master plan 2020 of Jharkhand state
- The demand side intervention envisages the real water savings. The main demand side interventions may be-i) Promote improved irrigation technologies (drip or sprinkler irrigation, etc.), ii) Crop choice management and diversification (promote less intensive crops like pulses and horticulture), iii) Promoting treated municipal waste water for irrigation and construction use, and iv) Managing energy and irrigation nexus (provide quality power supply when needed through separate feeders, high voltage distribution lines, solar pumps, etc.) The government should encourage and provide incentive the use of drip irrigation and sprinkler system.

8.0 BLOCK WISE AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

8.1 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, BANO BLOCK, SIMDEGA DISTRICT, JHARKHAND

Standard deviation 2			287	287.90			
Coefficient of variation (in %)			26.6	26.66			
Long term r	ainfall	Normal = 60%, Excess = 10%, Moderate drought = 30%, Rising trend of					
analysis (2012 – 2021) 19.36 mm/year					_	-	
	1600 1400 1200 1000 800	Rainfall analysis of Ban	block (2012 - 2021)				
	a 600 400 200 0 201	0 2012 2014	2016	5 201	8 2020	2022	
			Yea	r			
1.2 Land use, Agriculture, Irrigation & Cropping pattern							
Current fall	ow	82.49 Sq. km.	82.49 Sq. km.				
Net area sh	own	126.66 Sq. km.					
Area under	irrigation	Surface water NA		NA			
		Ground water	L3 Sq. km	•			
Principal cro	ops	Crop type Ar		Area (Sq. km.), 2019 - 20			
		Paddy		123.35			
		Ragi 7.		7.93			
		Oil seeds 5		5.65			
		Maize 0		0.41			
		Pulses 1		11.46			
		Vegetable	4.3	32			
1.3 Ground	water availab	ility & extraction (2020)					
Net ground water availability for future use (MCM)29.67							
Current annual ground water extraction for all uses (MCN					<u>VI) 2.19</u>		
Annual extractable ground water for recharge (MCM)					31.86		
Stage of ground water extraction (%)				6.88			
Category Safe							
1.4 Water level behavior							
Phreatic aquifer			Pre – monsoon Post monsoon		Post monsoon		
				May 2021) (November 2021)			
				3.90 – 7.25 mbgl. 1.93 – 3.13 mbgl.			
Seasonal w	Seasonal water level fluctuation between pre-monsoon				1.55 – 4.79 m.		
and post monsoon (22021)							
1.5 Hydrograph & water level trend analysis							

3. GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION A	ND OTHER ISSUES	
3.1 Aquifer wise resource availability and extraction		
3.1.1 Phreatic Aquifer (Aquifer - I)		
Ground water resource estimation (As on 31 st March 2020)		
Annual extractable ground water for recharge (MCM)	31.87	
Current annual ground water extraction for irrigation (MCM)	1.13	
Current annual ground water extraction for domestic (MCM)	1.06	
Current annual ground water extraction for industrial (MCM)	0	
Current annual ground water extraction for all uses (MCM)	2.19	
Net ground water availability for future use (MCM)	29.67	
Stage of ground water extraction (%)	6.88	
Category	Safe	
3.2 Chemical Quality of ground water & contamination		

3.2.1 Variation in Major and Minor elements

Phreatic Aquifer (Aquifer - I)

The EC value of the phreatic aquifer varies from 144 to 711 μ S/cm. TDS has been observed between 93.6 to 462.15 mg/l. Total hardness value ranges from 60 to 205 mg/l. Similarly, the Chloride value observed between 7.09 to 116.99 mg/l while the Sulphate value varies from 8.29 to 38.68 mg/l. Nitrate value ranges from 0.17 to 27.42 mg/l. Fluoride value found between 0 to 1.14 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 216 to 523 μ S/cm. TDS has been observed between 140.40 to 339.50 mg/l. Total hardness value ranges from 95 to 255 mg/l. Similarly, the Chloride value observed between 7.09 to 31.91 mg/l while the Sulphate value varies from 7.47 to 27.55 mg/l. Nitrate values observed between 0 to 13.56 mg/l. Fluoride value varies from 0 to 2.30 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose except Fluoride.

3.2.2 Suitability for irrigation

Phreatic Aquifer (Aquifer - I)	Semi – confined/ confined Aquifer (Aquifer – II)
Sodium percentage of ground water of	Sodium percentage of ground water of deeper
shallow aquifer (Aquifer –I) varies from 8.98	aquifer (Aquifer –II) varies from 7.55 to 23.01 while
to 49.02 while RSC value observed between -	RSC value observed between -0.08 to 0.01. SAR
0.19 to 1.33. SAR value ranges from 0.06 to	value ranges from 0.15 to 0.56 and falling in
2.03 and falling in excellent water class. The	excellent water class. The ground water of deeper
ground water of shallow aquifer (Aquifer – I)	aquifer (Aquifer – II) is suitable for irrigation
is suitable for irrigation.	

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 6.88%.

3.3.2 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability: Central Ground Water Board has constructed 4 exploratory and one observation wells. Yield of these wells varies from 0 to 3.00 lps. One to two sets of water bearing fracture zones have been encountered within 200 m drilling. Thickness of the fracture zones found between 1 to 2 m only.

3.3.3 Fluoride contamination: Fluoride value found beyond permissible limit (2.14 mg/l) at village Nawamile Paro.

4. SUPPLY SIDE MANAGEMENT

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 6.88%. To enhance the ground water development from the present 6.88 % to 50% stage of development, recommended for construction of 3955 dug wells (10 -20 m depth; 2 to 4 m diameter) and 961 bore wells (up to 150 m depth) for creating additional irrigation potential 1977 ham through dug wells and 1153 ham through bore wells.

4.2 Proposed number of artificial recharge structures:-The average post monsoon depth to water level observed less than 3 m (2.65 mbgl). Hence, artificial recharge structures not proposed.

5. DEMAND SIDE MANAGEMENT

- Promoting Micro irrigation technique(drip or sprinkler irrigation, etc.),
- Crop choice management and diversification

8.2 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, BANSJOR BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT F	EATURES			
Block Name		Bansjor		
Geographic	al Area (Sq. km	.)	164.50	
Hilly Area (S	Sq. km.)		29.70	
Population	(2011)		25519	
1.1 Rainfall	Analysis			
Decadal ave	erage annual ra	infall (2012 – 2021)	1190.45 mm	
Standard de	eviation		255.32	
Coefficient	of variation (in	%)	21.45	
Long term r	ainfall	Normal = 70%, Excess =	= 10%, Moderate dro	ought = 20%, Rising trend of
analysis (20	12 – 2021)	38 mm/year		
	R 1800 1600 1400 1200 1000 1000 400 200 0 201	Rainfall analysis of Bansjor block (2012 - 2021) Image: colspan="2">Image: colspan="2" Image: colspan="2">Image: colspan="2" Colspa="2" Colspa="2" Colspa="2" Colspan="2" Colspan="2" Colspan="2" C		
1.2 Land use. Agriculture. Irrigation & Cropping pattern				
Current fallo	ow vo	24.37 Sq. km.		
Net area sh	own	23.22 Sq. km.		
Area under	irrigation	Surface water	NA	
		Ground water	0.45 Sq. km.	
Principal cro	ops	Crop type	Area (Sq. km.), 2	019 – 20
		Paddy	14.39	
		Oil seeds	2.20	
		Ragi	0.32	
		Maize	0.44	
		Pulses	2.05	
Vegetable		2.96		
1.3 Ground water availability & extraction (2020)				
Net ground water availability for future use (MCM) 8.11				
Current annual ground water extraction for all uses (MCM) 0.38		0.38		
Annual extractable ground water for recharge (MCM) 8.49		8.49		
Stage of ground water extraction (%) 4.50		4.50		
Category Safe				

1.4 Water level behavior			
Phreatic aquifer		Pre – monsoon	Post monsoon
		May 2021)	(November 2021)
		3.30 – 7.50 mbgl.	2.20-6.24 mbgl.
Seasonal water level fluctuation between pre m	nonsoon	1.10 – 1.26 m.	
and post monsoon (2018)			
1.5 Hydrograph& water level trend analysis			
Hydrograph networl	k not loca	ated in this block	
2.0 AQUIFER DISPOSITION	moice A	quifor L Aquifor	11
2.2 Cross section:	grieiss – A	iquilei – I, Aquilei –	11
Only one exploratory well with one observation	well loca	ted in the block	
3. GROUND WATER RESOURCE, EXTRACTION, C	ONTAMI	NATION AND OTHE	RISSUES
3.1 Aguifer wise resource availability and extra	ction		
3.1.1 Phreatic Aguifer (Aguifer - I)			
Ground water resource estimation (As on 31 st M	larch 202	0)	
Annual extractable ground water for recharge (MCM)	- /	8.49
Current annual ground water extraction for irrig	, ation (M	CM)	0.045
Current annual ground water extraction for dom	nestic (MC	CM)	0.34
Current annual ground water extraction for indu	strial (M	CM)	0
Current annual ground water extraction for all u	ses (MCN	/)	0.38
Net ground water availability for future use (MCM) 8.11			8.11
Stage of ground water extraction (%)4.50			
Category Safe			
3.2 Chemical Quality of ground water & contan	nination		
3.2.1 Variation in Major and Minor elements			
Phreatic Aquifer (Aquifer - I)			
The EC value of the phreatic aquifer varies from 106 to 476 μ S/cm. TDS has been observed between			
68.9 to 309.4 mg/l. Total hardness value ranges from 50 to 135 mg/l. Similarly, the Chloride value			
observed between 3.54 to 17.73 mg/l while t	he Sulpha	ate value varies fro	m 10.44 to 18.00 mg/l.
Nitrate value ranges from 0.67 to 4.42 mg/l. Ov	erall grou	ind water quality of	shallow aquifer (Aquifer
- I) is suitable for domestic purpose.			
Semi – contined/ contined Aquiter (Aquiter – II)			
193 05 to 251 55 mg/l Total hardness value r	297 lU S anges fro	or μ3/cm. 105 mas	Similarly the Chloride
193.05 to 251.55 mg/l. Total naroness value ranges from 100 to 130 mg/l. Similarly, the Chloride value observed between 7.09 to 14.18 mg/l while the Sulphate value varies from 11.73 to 18.02 mg/l			
Nitrate values observed between 3.05to 3.18 mg/L Eluoride value varies from 0.25 to 1.15 mg/L In			
general, ground water guality of deeper aguifer (Aguifer – II) is suitable for domestic purpose.			
3.2.2 Suitability for irrigation			
Phreatic Aquifer (Aquifer - I) Semi – confined/confined Aquifer (Aquifer – II)			quifer (Aquifer – II)
Sodium percentage of ground water of	Sodium	percentage of gro	ound water of deeper
shallow aquifer (Aquifer –I) varies from 16.75 aquifer (Aquifer –II) varies from 22.52 to 36.91 whi			om 22.52 to 36.91 while
to 43.08 while RSC value observed between - RSC value observed between -1.77 to 0.52. SA			en -1.77 to 0.52. SAR
0.49 to 0.23. SAR value ranges from 0.28 to value ranges from 0.77 to 1.24 and falling			to 1.24 and falling in
1.69 and falling in excellent water class. The excellent water class. The ground water of deep			ground water of deeper

ground water of shallow aquifer (Aquifer – I)	aquifer (Aquifer – II) is suitable for irrigation
is suitable for irrigation.	

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 4.50%.

4. SUPPLY SIDE MANAGEMENT PLAN

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 4.50 %. To enhance the ground water development from the present 4.50 % to 50% stage of development, recommended for construction of 1080 dug wells (10 -20 m depth; 2 to 4 m diameter) and 263 bore wells (up to 150 m depth) for creating additional irrigation potential 540 ham through dug wells and 316 ham through bore wells.

4.2. Ground Water Resource Enhancement/Artificial Recharge structures proposed		
Annual extractable ground water for re	8.49	
Area of block (Sq. km.)		164.5
Area suitable for artificial recharge (Sq.	km.)	131.01
Type of aquifer		Hard rock/Soft rock
Area feasible for artificial recharge in So	q. km.(Post monsoon water	131.01
level> 3 mbgl)		
Average annual monsoon rainfall		1190.45 mm
Average post monsoon water level		4.22 mbgl.
Thickness of unsaturated zone		1.22 m.
Sub-surface storage space		31.97 MCM
Surface water requirement @ 75% effic	ciency	42.52 MCM
Source water availability = 30% of Rain fall x area		46.79 MCM
Non-committed runoff = 50% of runoff		23.40 MCM
Surface water available for recharge = 60% of Non-committed water.		14.04 MCM
Surplus water available (MCM)		28.48
Proposed structures	Percolation tank (Average	Nala Bund/Check dam /
	gross capacity – 0.188 MCM	Gully Plug (Average gross
	2 filling = 0.38 MCM), 30% of	capacity – 0.024 MCM 3
	water available for recharge	filling = 0.072 MCM), 30%
		of water available for
		recharge
Proposed number of structures 19		98
Volume of Water expected to be	7.22	7.06
conserved / recharged @ 75%		
efficiency (MCM)		
5. DEMAND SIDE MANAGEMENT		
• Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.).		

• Crop choice management and diversification(Promoting less intensive crops)

8.3 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, BOLBA BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT F	EATURES			
Block Name		Bolba		
Geographical Area (Sq. km.)		288.63		
Hilly Area (Sq. km.)		116.14		
Population (2011)		30786	
1.1 Rainfall	Analysis			
Decadal ave	rage annual ra	infall (2012 – 2021)	1085.81 mm	
Standard de	viation		219.98	
Coefficient o	of variation (in	%)	20.26	
Long term ra	ainfall	Normal = 70%, Excess =	20%, Modera	ate drought = 10%, Declining trend
analysis (202	12 – 2021)	of 33 mm/year		
	Annual Rainfall (mm) 1400 1200 800 400 400 0 0 0	Rainfall analysis of Bolba block (2012 - 2021)		
	201	0 2012 2014	2016 20	18 2020 2022
Year				
1.2 Land use, Agriculture, Irrigation & Cropping pattern				
Current fallow 39.12 Sq. km.				
Net area sho	et area shown 52.21 Sq. km.			
Area under irrigation Surface water NA				
		Ground water	1.76 Sq. kn	n.
Principal cro	ps	Crop type	Area (Sq. k	m.), 2019 - 20
		Paddy	44.26	
		Ragi	0.71	
		Oil seeds	2.47	
		Maize	0.58	
		Pulses	2.13	
Vegetable		1.94		
1.3 Ground water availability (2020)				
Net ground water availability for future use (MCM) 9.27		9.27		
Current annual ground water extraction for all uses (MCM)		2.17		
Annual extractable ground water for recharge (MCM)		л)	11.43	
Stage of ground water extraction (%)			18.94	
Category		Safe		

Category	Safe
3. Chemical Quality Of Ground Water & Contamination	

3.1 Variation in Major and Minor elements

Phreatic Aquifer (Aquifer - I)

The EC value of the phreatic aquifer varies from 389 to 609 μ S/cm. TDS has been observed between 93.6 to 462.15 mg/l. Total hardness value ranges from 60 to 205 mg/l. Similarly, the Chloride value observed between 7.09 to 116.99 mg/l while the Sulphate value varies from 8.29 to 38.68 mg/l. Nitrate value ranges from 0.17 to 27.42 mg/l. Fluoride value found between 0 to 1.14 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 216 to 523 μ S/cm. TDS has been observed between 252.85 to 395.85 mg/l. Total hardness value ranges from 195 to 215 mg/l. Similarly, the Chloride value observed between 17.73 to 77.99 mg/l while the Sulphate value varies from 20.05 to 23.39 mg/l. Nitrate values observed between 5.72 to 28.69 mg/l. Fluoride value varies from 0.14 to 0.95 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose.

3.2.2 Suitability for irrigation

Semi – confined/ confined Aquifer (Aquifer – II)
Sodium percentage of ground water of deeper
aquifer (Aquifer –II) varies from 28.11 to 30.62 while
RSC value observed between -0.09 to -0.87. SAR
value ranges from 0.79 to 1.05 and falling in
excellent water class. The ground water of deeper
aquifer (Aquifer – II) is suitable for irrigation

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 18.94%.

4. SUPPLY SIDE MANAGEMENT PLAN

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 18.94%. To enhance the ground water development from the present 18.94 % to 50% stage of development, recommended for construction of 1236 dug wells (10 -20 m depth; 2 to 4 m diameter) and 300 bore wells (up to 150 m depth) for creating additional irrigation potential 618 ham through dug wells and 360 ham through bore wells.

4.2. Proposed number of artificial recharge structures			
Proposed number of artificial	The average post monsoon depth to water level observed		
recharge structures	less than 3 m (2.48 mbgl). Hence, artificial recharge		
	structures not proposed.		

5. Demand side management

- Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),
- Crop choice management and diversification(Promoting less intensive crops)

8.4 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, JALDEGA BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT FEATURES			
Block Name		Jaldega	
Geographical Area (Sq. km.)		428.20	
Hilly Area (Sq. km.)		77.31	
Population (2011)		64286	
1.1 Rainfall Analysis			
Decadal average annual	rainfall (2012 – 2021)	1058.31 mm	
Standard deviation		278.01	
Coefficient of variation (n %)	26.27	
Long term rainfall	Normal = 70%, Excess	= 10%, Moderat	e / Severe drought = 20%,
analysis (2012 – 2021)	Declining trend of 48 r	nm/year	
1600 (1400 (1400 1200 Ilpi 1000 800 400 400 200 0 2	Rainfall analysis of Jaldega block (2012 - 2021) (u) 1400 1400 1000		
1.2 Londons, Apriculture, Invication, 9. Creating a other			
1.2 Land use, Agriculture, Irrigation & Cropping pattern			
Current fallow 83.80 Sq. km.			
Area under irrigation	S1.04 Sq. KIII.	ΝΑ	
Area under imgation	Ground water	2 /2 Sa km	
Principal crops	Cron type	2.43 Sq. Kill	· •) 2016 - 17
	Paddy	32.68	1.1, 2010 - 17
	Ragi	1.66	
		3.74	
	Maize	0.29	
	Pulses	6.65	
Veretable		2.24	
1 3 Ground water availability (2017)			
Net ground water availability for future use (MCM) 22.10			
Current annual ground water extraction for all uses (MCM) 4.75		A 75	
Current annual ground water for recharge (MCM) 4.75		37.93	
Stage of ground water extraction (%) 14.68		14.68	
Category Safe		Safe	
- carebory			

2.0 AQUIFER DISPOSITION

2.1 Numbers of aquifers Granite gneiss – Aquifer – I, Aquifer - II

2.2 Cross section: Five exploratory and one observation wells have been constructed in Jaldega block. The yield of these wells varies from very low to 5.94 lps. The depth of occurrence of fractures zones ranging from 18.00 to 193.00 mbgl. The lithological cross section of selected three wells is shown in below

3.2 Chemical Quality of ground water & contamination

3.1 Variation in Major and Minor elements

Phreatic Aquifer (Aquifer - I)

The EC value of the phreatic aquifer varies from 118 to 899 μ S/cm. TDS has been observed between 76.7 to 584.35 mg/l. Total hardness value ranges from 45 to 300 mg/l. Similarly, the Chloride value observed between 9.27 to 127.62 mg/l while the Sulphate value varies from 7.36 to 57.97 mg/l. Nitrate value ranges from 3.06 to 28.72 mg/l. Fluoride value found between 0 to 0.17 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 166 to 540 μ S/cm. TDS has been observed between 107.9 to 339.95 mg/l. Total hardness value ranges from 60 to 220 mg/l. Similarly, the Chloride value observed between 10.64 to 67.36 mg/l while the Sulphate value varies from 11.04 to 29.38 mg/l. Nitrate values observed between 1.26 to 28.03 mg/l. Fluoride value varies from 0 to 1.07 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose.

3.2.2 Suitability for irrigation

Phreatic Aquifer (Aquifer - I)	Semi – confined/ confined Aquifer (Aquifer – II)
Sodium percentage of ground water of	Sodium percentage of ground water of deeper
shallow aquifer (Aquifer –I) varies from 10.90	aquifer (Aquifer –II) varies from 13.95 to 36.06 while
to 33.11 while RSC value observed between -	RSC value observed between -0.28 to -0.42. SAR
0.18 to -2.76. SAR value ranges from 0.12 to	value ranges from 0.45 to 1.16 and falling in
1.61 and falling in excellent water class. The	excellent water class. The ground water of deeper
ground water of shallow aquifer (Aquifer – I)	aquifer (Aquifer – II) is suitable for irrigation
is suitable for irrigation.	

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 14.68%.

3.3.2 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability: Central Ground Water Board has constructed 4 exploratory and one observation wells. Yield of these wells varies from 0 to 5.94 lps. One to two sets of water bearing fracture zones have been encountered within 200 m drilling. Thickness of the fracture zones found between 1 to 2 m only.

4. SUPPLY SIDE MANAGEMENT PLAN

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 14.68%. To enhance the ground water development from the present 14.68 % to 50% stage of development, recommended for construction of 2536 dug wells (10 -20 m depth; 2 to 4 m diameter) and 616 bore wells (up to 150 m depth) for creating additional irrigation potential 1268 ham through dug wells and 739 ham through bore wells.

nam through dug wens and 755 ham through t	Sole wens:		
4.2 Proposed number of artificial recharge structures			
Proposed number of artificial recharge	The average post monsoon depth to water level		
structures	observed less than 3 m (2.44 mbgl). Hence, artificial		
recharge structures not proposed.			
5. DEMAND SIDE MANAGEMENT			

• Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),

• Crop choice management and diversification (Promoting less intensive crops)

8.5 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, KERSAI BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT F	EATURES					
Block Name			Kersai	Kersai		
Geographical Area (Sq. km.)			249.40			
Hilly Area (Sq. km.)			89.18			
Population	(2011)		39218			
1.1 Rainfall	Analysis					
Decadal ave	erage annual ra	ainfall (2012 – 2021)	1229.03 mm	I		
Standard de	eviation		378.56			
Coefficient	of variation (ir	n %)	30.88			
Long term r	ainfall	Normal = 60%, Excess	= 20%, Moder	ate drought = 20%, Rising trend of		
analysis (20	12 – 2021)	59 mm/year				
	2000 - (mu 1500 - leg	Rainfall analysis of Ker	rsai block (20	12 - 2021)		
	Annual Rain 200 -		γ= ····································	59.18x - 11811		
	0					
		1 1				
	20	10 2012 2014	2016 20	018 2020 2022		
Year						
1.2 Land us	e, Agriculture	, Irrigation & Cropping pa	attern			
Current falle	OW	32.46 Sq. km.				
Net area sh	own	60.84 Sq. km.				
Area under	irrigation	Surface water				
		Ground water	0.52 Sq. kr	n.		
Principal cro	ops	Crop type	Area (Sq. km.), 2019 - 20			
		Paddy	44.01			
		Ragi	0.41			
		Oll seeds	4.50			
		Maize	0.70			
Pulses		6.54				
Vegetable			9.21			
1.3 Ground water availability (2020)						
Net ground water availability for future use (MCM)				9.21		
Current annual ground water extraction for all uses (MCM)			s (MCM)	1.03		
Annual extractable ground water for recharge (MCM)			M)	10.25		
Stage of ground water extraction (%)				10.07		
Category				Sate		

1.4 Water level behavior			
Phreatic aquifer	Pre – monsoon	Post monsoon	
	May 2021)	(November 2021)	
	5.90 – 5.92 mbgl.	2.58 – 3.25 mbgl.	
Seasonal water level fluctuation between pre	2.65 – 3.34 m.		
monsoon and post monsoon (2021)			
1.5 Hydrograph& water level trend analysis: Hy	rograph network station r	not located.	
2.0 AQUIFER DISPOSITION			
2.1 Numbers of aquifers Granite g	neiss – Aquifer – I, Aquife	r - II	
2.2 Cross section:			
Only one exploratory well located in the block.			
3. GROUND WATER RESOURCE, EXTRACTION, C	ONTAMINATION AND OT	HER ISSUES	
3.1 Aquifer wise resource availability and extra	ction		
3.1.1 Phreatic Aquifer (Aquifer - I)			
Ground water resource estimation (As on 31 st M	arch 2020)		
Annual extractable ground water for recharge (I	MCM)	10.25	
Current annual ground water extraction for irrigation	ation (MCM)	0.51	
Current annual ground water extraction for dom	estic (MCM)	0.52	
Current annual ground water extraction for indu	strial (MCM)	0	
Current annual ground water extraction for all us	ses (MCM)	1.03	
Net ground water availability for future use (MC	M)	9.21	
Stage of ground water extraction (%)		10.07	
Category		Safe	
3.2 Chemical Quality of ground water & contam	ination		
3.2.1 Variation in Major and Minor elements			
Phreatic Aquifer (Aquifer - I)			
The EC value of the phreatic aquifer varies from	618 to 1307 μS/cm. TDS h	has been observed between	
401.7 to 849.55 mg/l. Total hardness value range	es from 235 to 330 mg/l. S	Similarly, the Chloride value	
observed between 65.02 to 255.24 mg/l while	the Sulphate value varies	from 22.65 to 48.67 mg/l.	
Nitrate value ranges from 18.74 to 28.08 mg/	I. Fluoride value found k	between 032 to 1.03 mg/l.	
Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for	domestic purpose.	
Semi – confined/ confined Aquifer (Aquifer – II)			
The EC value of the deeper aquifer varies from	18/ to 821 μ S/cm. IDS h	as been observed between	
121.55 to 533.65 mg/l. Total hardness value ran	ges from 70 to 380 mg/l. S	Similarly, the Chloride value	
observed between 24.82 to 113.44 mg/l while	the Sulphate value varie	s from 7.46 to 35.55 mg/l.	
Nitrate values observed between 4.14 to 27.8	mg/I. Fluoride value vari	les from 0 to 1.06 mg/l. In	
general, ground water quality of deeper aquiter	(Aquiter – II) is suitable to	r domestic purpose.	
3.2.2 Suitability for irrigation			
Phreatic Aquiter (Aquiter - I) Semi – contined/ contined Aquiter (Aquiter – II			
Sodium percentage of ground water of shallow	Sodium percentage of ground water of shallow Sodium percentage of ground water of dee		
aquiter (Aquiter –I) varies from 22.55 to 46.97 aquiter (Aquiter –II) varies from 11.55 to 38.2			
while RSC value observed between -1.16 to - while RSC value observed between - 0.39 to			
3.26. SAK value ranges from 0.85 to 3.20 and	-3.96. SAK Value range	es from 0.48 to 1.01 and	
railing in excellent water class. The ground	railing in excellent water	class. The ground water of	
water of shallow aquiter (Aquiter – I) is	ueeper aquiter (Aquiter -	– II) is suitable for irrigation	
suitable for irrigation.			
3.3 Other issues			

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 10.07%.

4.SUPPLY SIDE MANAGEMENT PLAN

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 10.07%. To enhance the ground water development from the present 10.07 % to 50% stage of development, recommended for construction of 1229 dug wells (10 -20 m depth; 2 to 4 m diameter) and 299 bore wells (up to 150 m depth) for creating additional irrigation potential 615 ham through dug wells and 359 ham through bore wells.

4.2 Proposed number of artificial recharge structures

Proposed number of artificial	The average post monsoon depth to water level observed		
recharge structures	less than 3 m (2.92 mbgl). Hence, artificial recharge		
	structures not proposed.		

5. DEMAND SIDE MANAGEMENT

- Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),
- Crop choice management and diversification(Promoting less intensive crops)

8.6 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, KOLEBIRA BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT FEATURES					
Block Name	Kolebira				
Geographical Area (Sq. km.)		437.36			
Hilly Area (Sq. km.)		54.00			
Population (2011)		71283			
1.1 Rainfall Analysis					
Decadal average annual ra	ainfall (2012 – 2021)	1072.65 mm			
Standard deviation		320.39			
Coefficient of variation (in	%)	29.87			
Long term rainfall	Normal = 60%, Excess =	= 30%, Severe d	rought = 109	%, Rising trend of 59	
analysis (2012 – 2021)	mm/year				
Here is a constraint of the second se	Rainfall analysis of Kolel	bira block (201 y = 58 2016 201 Year	2 - 2021) 57x - 11701 8 2020	2022	
1.2 Land use, Agriculture,	Irrigation & Cropping par	ttern			
Current fallow	45.36 Sq. km.				
Net area shown	134.78 Sq. km.				
Area under irrigation	Surface water	NA			
Duin singly and a	Ground water	2.75 Sq. Km.) 2010 20		
Principal crops	Crop type	Area (Sq. km.), 2019 - 20			
	Paddy	99.63			
	Kagi Oil sooda	8.52			
	Oli seeus	1.50			
	Dulcos	0.34			
Puises					
Vegetable 3.44					
1.5 Ground water availability (2020)					
Net ground water availability for future use (NICNI) 24.55 Current applied ground water extraction for all uses (NICNI) 2.60					
Current annual ground water for recharge (MCM) 3.09					
Annual Excluding ground water extraction (%) 20.02					
1 4 Water level behavior	Category Sare				
Phreatic aquifer		Pre – mo	nsoon	Post monsoon	

46.15 to 468.65 mg/l. Total hardness value ranges from 35 to 200 mg/l. Similarly, the Chloride value observed between 3.55 to 95.72 mg/l while the Sulphate value varies from 8.65 to 37.64 mg/l. Nitrate value ranges from 3.05 to 28.12 mg/l. Fluoride value found between 0 to 0.32 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 143 to 752 μ S/cm. TDS has been observed between 92.95 to 488.8 mg/l. Total hardness value ranges from 40 to 330 mg/l. Similarly, the Chloride value observed between 3.54 to 106.35 mg/l while the Sulphate value varies from 6.33 to 44.92 mg/l. Nitrate values observed between 0.24 to 28.85 mg/l. Fluoride value varies from 0 to 0.82 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose.

3.2.2 Suitability for irrigation	
Phreatic Aquifer (Aquifer - I)	Semi – confined/ confined Aquifer (Aquifer – II)
Sodium percentage of ground water of shallow	Sodium percentage of ground water of deeper
aquifer (Aquifer –I) varies from 10.38 to 47.58	aquifer (Aquifer -II) varies from 15.44 to 48.98
while RSC value observed between -0.30 to -	while RSC value observed between - 0.45 to
1.08. SAR value ranges from 0.07 to 2.09 and	0.41. SAR value ranges from 0.55 to 1.80 and falling
falling in excellent water class. The ground	in excellent water class. The ground water of
water of shallow aquifer (Aquifer - I) is	deeper aquifer (Aquifer – II) is suitable for irrigation
suitable for irrigation.	

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 13.15%.

4. Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 13.15%. To enhance the ground water development from the present 13.15 % to 50% stage of development, recommended for construction of 3244 dug wells (10 -20 m depth; 2 to 4 m diameter) and 788 bore wells (up to 150 m depth) for creating additional irrigation potential 1622 ham through dug wells and 946 ham through bore wells.

5. GROUND WATER RESOURCE AND ENHANCEMENT

5.1 Proposed number of artificial	The	avera	ge	post	: mons	oon dep	oth to w	ater level	observed
recharge structures	less	than	3	m	(2.39	mbgl).	Hence,	artificial	recharge
	structures not proposed.								

5.2 Demand side management

• Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),

• Crop choice management and diversification(Promoting less intensive crops)

8.7 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, KURDEG BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT FI	EATURES					
Block Name			Kurdeg	Kurdeg		
Geographical Area (Sq. km.)		262.30	262.30			
Hilly Area (Sq. km.)		93.80	93.80			
Population (2011)		47984			
1.1 Rainfall	Analysis					
Decadal aver	rage annual ra	ainfall (2012 – 2021)	1295.83 mm			
Standard dev	viation		299.93	299.93		
Coefficient o	of variation (in	%)	23.15			
Long term ra	ainfall	Normal = 60%, Exce	ss = 20%, Modera	te drought = 20%, Rising trend of		
analysis (201	12 – 2021)	36 mm/year				
	2000 - Hunual Kainfall (mm) 1000 - 500 - 0 - 20	Rainfall analysis of K	Curdeg block (20	12 -2021) 6.31x - 71937 18 2020 2022		
1.2 Land use	e, Agriculture,	Irrigation & Cropping	pattern			
Current fallo	W	26.75 Sq. km.				
Net area sho	own	65.03 Sq. km.				
Area under i	rrigation	Surface water	NA	NA		
		Ground water	1.26 Sq. km	1		
Principal cro	ps	Crop type	Area (Sq. kr	Area (Sq. km.), 2019 - 20		
		Paddy	44.01			
		Ragi	0.41			
		Oil seeds	4.50	4.50		
		Maize	0.70	0.70		
Pulses		6.54	6.54			
Vegetable			9.21			
1.3 Ground water availability (2020)						
Net ground water availability for future use (MCM)9.27				9.27		
Current annual ground water extraction for all uses (MCM)			ses (MCM)	1.89		
Annual extractable ground water for recharge (MCM) 11.16				11.16		
Stage of ground water extraction (%)				16.92		
Category Safe				Safe		
1.4 Water le	vel behavior					
Phreatic aquifer Pre – monsoon Post monsoon						

observed between 28.36 to 88.63 mg/l while the Sulphate value varies from 10.78 to 63.87 mg/l. Nitrate value ranges from 6.74 to 28.25 mg/l. Fluoride value found between 0 to 0.74 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 169 to 1127 μ S/cm. TDS has been observed between 109.85 to 732.55 mg/l. Total hardness value ranges from 55 to 500 mg/l. Similarly, the Chloride value observed between 7.09 to 95.72 mg/l while the Sulphate value varies from 9.45 to 63.9 mg/l. Nitrate values observed between 2.28 to 29.10 mg/l. Fluoride value varies from 0.15 to 0.25 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose.

3.2.2 Suitability for irrigation

Phreatic Aquifer (Aquifer - I)	Semi – confined/ confined Aquifer (Aquifer – II)
Sodium percentage of ground water of shallow	Sodium percentage of ground water of deeper
aquifer (Aquifer –I) varies from 23.11 to 36.69	aquifer (Aquifer -II) varies from 13.42 to 31.51
while RSC value observed between -0.37 to	while RSC value observed between - 0.28 to
0.73. SAR value ranges from 0.75 to 1.12 and	0.11. SAR value ranges from 0.64 to 0.74 and falling
falling in excellent water class. The ground	in excellent water class. The ground water of
water of shallow aquifer (Aquifer - I) is	deeper aquifer (Aquifer – II) is suitable for irrigation
suitable for irrigation.	

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 16.92%.

4. Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 16.92%. To enhance the ground water development from the present 16.94 % to 50% stage of development, recommended for construction of 1636 dug wells (10 -20 m depth; 2 to 4 m diameter) and 300 bore wells (up to 150 m depth) for creating additional irrigation potential 618 ham through dug wells and 360 through bore wells.

5. GROUND WATER RESOURCE AND ENHANCEMENT				
Area of block (Sq. km.)	262.30			
Area suitable for artificial recharge (Sq.)	(m.)	242.16		
Type of aquifer		Hard rock/Soft rock		
Area feasible for artificial recharge in Sq.	. km.(Post	242.16		
monsoon water level> 3 mbgl)				
Average annual monsoon rainfall		1295.83 mm		
Average post monsoon water level		3.92 mbgl.		
Thickness of unsaturated zone		0.92 m.		
Sub-surface storage space		4.46 MCM		
Surface water requirement @ 75% efficiency		5.93 MCM		
Source water availability = 30% of Rain fall x area		94.14 MCM		
Non-committed runoff = 50% of runoff		47.07 MCM		
Surface water available for recharge = 30% of Non-		14.12 MCM		
committed water.				
Surplus water available (MCM)	8.19			
Proposed structures	Percolation tar	nk (Average	Nala Bund/Check dam /	
	gross capacity ·	– 0.188 MCM	Gully Plug (Average gross	
2 filling = 0.38		3 MCM), 30% capacity – 0.024 MCM		

	of water available for	filling = 0.072 MCM), 30% of		
	recharge	water available for recharge		
Proposed number of structures	19	98		
Volume of Water expected to be	7.22	7.06		
conserved / recharged @ 75%				
efficiency (MCM)				
5.2 Demand side management				
Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),				
• Crop choice management and diversification(Promoting less intensive crops)				

8.8 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, PAKARTARN BLOCK, SIMDEGA DISTRICT, JHARKHAND

1.SALIENT FEATURES			
Block Name		Pakartarn	
Geographical Area (Sq. kr	n.)	301.31	
Hilly Area (Sq. km.)		33.66	
Population (2011)		37507	
1.1 Rainfall Analysis			
Decadal average annual r	ainfall (2012 – 2021)	1285.86 mm	
Standard deviation		227.58	
Coefficient of variation (in %)		17.70	
Long term rainfall	Normal = 80%, Excess = 10%, Moderate drought = 10%, Rising trend o		
analysis (2012 – 2021)	20 mm/year		
R	Rainfall analysis of Pakartarn block (2012 - 2021)		
1800 -			

1.2 Land use, Agriculture, Irrigation & Cropping pattern

1.2 Land use, Agriculture, inigation & cropping pattern						
Current fallow	36.24 Sq. km.					
Net area shown	70.07 Sq. km.					
Area under irrigation	Surface water	NA				
	Ground water	0.64 Sq. km.				
Principal crops	Crop type	Area (Sq. km.), 2019 - 20				
	Paddy	60.94				
	Ragi	1.32				
	Oil seeds	2.79				
	Maize	0.09				
	Pulses	2.69				
	Vegetable	3.70				
1.3 Ground water availability (2017)						
Net ground water availability for future use (MCM)			15.60			
Current annual ground water extraction for all uses (MCM)			1.13			
Annual extractable ground water for recharge (MCM)			16.94			
Stage of ground water extraction (%)			6.78			
Category		Safe				

Current annual ground water extraction for industrial (MCM)	0			
Current annual ground water extraction for all uses (MCM)	1.13			
Net ground water availability for future use (MCM)	15.60			
Stage of ground water extraction (%)	6.78			
Category	Safe			
3.2 Chemical Quality of ground water & contamination				

3.2.1 Variation in Major and Minor elements

Phreatic Aquifer (Aquifer - I)

The EC value of the phreatic aquifer varies from 118 to 468 μ S/cm. TDS has been observed between 76.7 to 304.2 mg/l. Total hardness value ranges from 45 to 155 mg/l. Similarly, the Chloride value observed between 10.64 to 60.27 mg/l while the Sulphate value varies from 7.54 to 11.17 mg/l. Nitrate value ranges from 8.20 to 27.74 mg/l. Fluoride value found between 0 to 0.21 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 157 to 210 μ S/cm. TDS has been observed between 102.05 to 136.50 mg/l. Total hardness value ranges from 65 to 75 mg/l. Similarly, the Chloride value observed between 14.18 to 21.27 mg/l while the Sulphate value varies from 9.55 to 12.29 mg/l. Nitrate values observed between 0.21 to 25.05 mg/l. Fluoride value varies from 0.45 to 1.07 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose.

3.2.2 Suitability for irrigation

Phreatic Aquifer (Aquifer - I)	Semi – confined/ confined Aquifer (Aquifer – II)		
Sodium percentage of ground water of shallow	Sodium percentage of ground water of deeper		
aquifer (Aquifer –I) varies from 24.25 to 35.11	aquifer (Aquifer -II) varies from 21.62 to 31.28		
while RSC value observed between -0.30 to -	while RSC value observed between - 0.19 to		
0.67. SAR value ranges from 0.40 to 1.25 and	-0.49. SAR value ranges from 0.41 to 0.76 and		
falling in excellent water class. The ground	falling in excellent water class. The ground water of		
water of shallow aquifer (Aquifer - I) is	deeper aquifer (Aquifer – II) is suitable for irrigation		
suitable for irrigation.			

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 6.78%.

3.3.2 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability: Central Ground Water Board has constructed 2 exploratory wells. Yield of both the wells found only 0.13 lps. One to two sets of water bearing fracture zones have been encountered within 200 m drilling. Thickness of the fracture zones found between 0.50 to 1.50 m only.

4. SUPPLY SIDE MANAGEMENT PLAN

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 6.78%. To enhance the ground water development from the present 6.78 % to 50% stage of development, recommended for construction of 2080 dug wells (10 -20 m depth; 2 to 4 m diameter) and 505 bore wells (up to 150 m depth) for creating additional irrigation potential 1040 ham through dug wells and 606 ham through bore wells.

4.2. Ground Water Resource And Enhancement/ Proposed Artificial Recharge structures				
Area of block (Sq. km.)	301.31			
Area suitable for artificial recharge (Sq. km.)	108.19			
Type of aquifer	Hard rock/Soft rock			

Area feasible for artificial recharge in Sq.	108.19				
monsoon water level> 3 mbgl)					
Average annual monsoon rainfall	1285.86 mm				
Average post monsoon water level		4.16 mbgl.			
Thickness of unsaturated zone	1.16 m.				
Sub-surface storage space		2.51 MCM			
Surface water requirement @ 75% effici	3.34 MCM				
Source water availability = 30% of Rain fa	41.73 MCM				
Non-committed runoff = 50% of runoff	20.87 MCM				
Surface water available for recharge = 30% of Non-		6.26 MCM			
committed water.					
Surplus water available (MCM)		2.92			
Proposed structures Percolation ta		ık (Average Nala Bund/Check dam /			
gross capacity		– 0.188 MCM	Gully Plug (Average gross		
	2 filling = 0.38 MCM), 30%		capacity – 0.024 MCM 3		
	of water available for		filling = 0.072 MCM), 30% of		
	recharge		water available for recharge		
Proposed number of structures 9			45		
Volume of Water expected to be	3.42		3.24		
conserved / recharged @ 75%					
efficiency (MCM)					
5. DEMAND SIDE MANAGEMENT					
• Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),					
• Crop choice management and diversification (Promoting less intensive crops)					

8.9 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, SIMDEGA BLOCK, SIMDEGA DISTRICT, JHARKHAND

Block Name		Simdega	
Geographical Area (Sq. km.)		446.67	
Hilly Area (Sq. km.)		49.90	
Population (2011)		115075	
1.1 Rainfall Analysis			
Decadal average annual rainfall (2012 – 2021)		1492.18 mm	
Standard deviation		318.27	
Coefficient of variation (in %)		21.33	
Long term rainfall	Normal = 70%, Excess = 30%, Declining trend of 10 mm/year		

analysis (2012 – 2021)

Current fallow	92.09 Sq. km.				
Net area shown	98.32 Sq. km.				
Area under irrigation	Surface water	NA			
	Ground water	2.5 Sq. km.			
Principal crops	Crop type	Area (Sq. km.), 2019 - 20			
	Paddy	74.99			
	Ragi	3.63			
	Oil seeds	4.07			
	Maize	0.76			
	Pulses	6.89			
	Vegetable	7.88			
1.3 Ground water availability (2020)					
Net ground water availability for future use (MCN		1)	30.67		
Current annual ground water extraction for all use		es (MCM)	/ICM) 4.51		
Annual extractable ground water for recharge (MC		CM)	35.20		
Stage of ground water ext	Stage of ground water extraction (%)		12.83		
Category			Safe		
1.4 Water level behavior					
Phreatic aquifer	Phreatic aquifer I			Post monsoon	
	May			(November 2021)	
		3.95 – 8.40 mbg	gl.	1.05 – 2.95 mbgl.	

Seasonal water level fluctuation between pre	1.60 – 3.70 m.				
monsoon and post monsoon (2021)					
1.8 Hydrograph& water level trend analysis					
	Hydrograph				
Site Name : Biru State : Jharkhand District : G	UNNLA Tahsif : JALDEGA Block : JALDEGA Village : Biru				
3	3				
P P P P P P P P P P P P P P P P P P P	o Binităl (mm)				
s Aver					
6					
6 4 4 4 4 δ δ δ δ 6 6 6 6 6 6 6 6 6 6 6	Z Z Z Z Z Z Z Z Ž Ž Ž Ž Ž Ž Ž Ž Ž Ž Ž Ž				
von neu May May Nan de L Nan d	Lun Lun Jan Jan Jan Jan Jan Jan Jan Jan Jan Ja				
	Ime				
□ PreMonsoonWtrLvi □ PostMonsoonW	trLvl V - PreMonV4rLvTrend V - PostMonV4rLvTrend				
rremonsoon water Le Post Monsoon Water Le	er nena: r = -0.00/940x + 3.52027 vel Trend: Y = 0.000575X + 3.328048				
Hydrographs located at Biru showing Pre-	Hydrographs located at Biru showing post-				
monsoon declining water level trend @	monsoon rising water level trend @ 0.0708				
	117 year.				
2.1 Numbers of aquifers Granite	meiss – Aquifer – I. Aquifer - II				
2.2 Cross section:					
Two exploratory wells have been constructed in	the Simdega town within half km. distance. Thus,				
lithological cross section cannot be prepared.					
3. GROUND WATER RESOURCE, EXTRACTION, C	ONTAMINATION AND OTHER ISSUES				
3.1 Aquifer wise resource availability and extra	ction				
3.1.1 Phreatic Aquifer (Aquifer - I)					
Ground water resource estimation (As on 31 st March 2020)					
Annual extractable ground water for recharge (MCM)35.20					
Current annual ground water extraction for irrigation (MCM)2.50					
Current annual ground water extraction for domestic (MCM)2.01					
Current annual ground water extraction for industrial (MCM) 0					
Current annual ground water extraction for all uses (MCM)4.51					
Net ground water availability for future use (MCM)30.67					
Stage of ground water extraction (%)12.83					
Category Safe					
3.2 Chemical Quality of ground water & contamination					
3.2.1 Variation in Major and Minor elements					
Phreatic Aquiter (Aquiter - I)					
The EC value of the deeper aquifer varies from 195 to 860 μ S/cm. TDS has been observed between					

126.75 to 559 mg/l. Total hardness value ranges from 70 to 319 mg/l. Similarly, the Chloride value observed between 7.09 to 109.90 mg/l while the Sulphate value varies from 11.02 to 42.82 mg/l. Nitrate values observed between 1.05 to 33.94 mg/l. Fluoride value varies from 0 to 0.80 mg/l. Overall ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 133 to 682 μ S/cm. TDS has been observed between 86.45 to 443.3 mg/l. Total hardness value ranges from 45 to 260 mg/l. Similarly, the Chloride value observed between 7.09 to 53.18 mg/l while the Sulphate value varies from 6.82 to 62.11 mg/l. Nitrate values observed between 0 to 26.13 mg/l. Fluoride value varies from 0.16 to 2.18 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose except Fluoride.

3.2.2 Suitability for irrigation

Semi – confined/ confined Aquifer (Aquifer – II)		
Sodium percentage of ground water of deeper		
aquifer (Aquifer -II) varies from 26.71 to 41.72		
while RSC value observed between - 0.19 to		
0.12. SAR value ranges from 0.64 to 1.15 and falling		
in excellent water class. The ground water of		
deeper aquifer (Aquifer – II) is suitable for irrigation		

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 12.83%.

3.3.2 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability: Central Ground Water Board has constructed 2 exploratory and one observation wells. Yield of these wells varies from 0.45 to 3.00 lps. One to three sets of water bearing fracture zones have been encountered within 200 m drilling. Thickness of the fracture zones found between 1 to 1.50 m only.

3.3.3 Fluoride contamination: Fluoride value found beyond permissible limit at villages Simdega (1.86 mg/l), Banabira (1.69 mg/l) and Sewai 2.18 mg/l).

4. SUPPLY SIDE MANAGEMENT

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 12.83%. To enhance the ground water development from the present 12.83 % to 50% stage of development, recommended for construction of 4090 dug wells (10 -20 m depth; 2 to 4 m diameter) and 994 bore wells (up to 150 m depth) for creating additional irrigation potential 2045 ham through dug wells and 1193 ham through bore wells.

4.2Proposed number of artificial recharge structures

	0
Proposed number of artificial	The average post monsoon depth to water level observed
recharge structures	less than 3 m (1.88 mbgl). Hence, artificial recharge
	structures not proposed.

5. DEMAND SIDE MANAGEMENT

- Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),
- Crop choice management and diversification(Promoting less intensive crops)
- Promoting treated municipal waste water for irrigation and construction use

8.10 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, THETHAITANGAR BLOCK, SIMDEGA DISTRICT, JHARKHAND

	Bainfall analysis of Thethaitangar block (2012 - 2021)					
	2500					
	ີ <u>ເ</u>			y = -21	.22x + 443	320
	lipi 1500					
	1000 -					
	W 500					
	0 +					
	201	10 2012 2014		2016 20	18 20	020 2022
				Year		
1.2 Land use,	Agriculture,	Irrigation & Cropping	g patte	ern		
Current fallow	rrent fallow 139.32 Sq. km.					
Net area show	vn · ··	110.34 Sq. km.				
Area under irr	ea under irrigation Surface water NA					
	Ground water 5.05 Sq. km.			20		
Principal crops	S	Crop type		Area (Sq. K	m.), 2019	7 – 20
		Paddy		84.63		
Ragi Oil coode			0.30			
	Oil seeds			2.49		
		IVIAIZE		0.27		
		Puises		4.66		
1.2 Ground w	ator availabi			4.00		
Net ground w	ater availabi	lity for future use (M(<u>^</u> \/\		22/18	
Net ground water availability for future use (NICN) 32.48 Current applied ground water extraction for all water (NACNA) C.21						
Current annual ground water extraction for an uses (MCM) 0.21 Appual extractable ground water for recharge (MCM) 28.70						
Stage of ground water extraction (%)						
Category			Safe			
1.4 Water level behavior						
Phreatic aquifer Pre – monsc		- monsoon		Post monsoon		
		May 2021)			(November 2021)	
3.40 – 10.50 mbgl. 1.2		1.20 – 7.47 mbgl.				
Seasonal wate	Seasonal water level fluctuation between pre 1.05 – 4.51 m.					
monsoon and	post monso	on (2021)				
1.5 Hydrograp	ph& water le	evel trend analysis				

ground water quality of shallow aquifer (Aquifer – I) is suitable for domestic purpose.

Semi – confined/ confined Aquifer (Aquifer – II)

The EC value of the deeper aquifer varies from 201 to 470 μ S/cm. TDS has been observed between 130.65 to 305.50 mg/l. Total hardness value ranges from 65 to 175 mg/l. Similarly, the Chloride value observed between 10.64 to 49.63 mg/l while the Sulphate value varies from 6.87 to 35.05 mg/l. Nitrate values observed between 1.74 to 13.77mg/l. Fluoride value varies from 0.17 to 3.87 mg/l. In general, ground water quality of deeper aquifer (Aquifer – II) is suitable for domestic purpose except Fluoride.

3.2.2 Suitability for irrigation

Phreatic Aquifer (Aquifer - I)	Semi – confined/ confined Aquifer (Aquifer – II)		
Sodium percentage of ground water of shallow	Sodium percentage of ground water of deeper		
aquifer (Aquifer –I) varies from 12.97 to 54.74	aquifer (Aquifer -II) varies from 26.61 to 35.13		
while RSC value observed between -0.49 to	while RSC value observed between – 0.18 to		
0.62. SAR value ranges from 0.61 to 1.81 and	0.22. SAR value ranges from 0.75 to 1.22 and falling		
falling in excellent water class. The ground	in excellent water class. The ground water of		
water of shallow aquifer (Aquifer – I) is	deeper aquifer (Aquifer – II) is suitable for irrigation		
suitable for irrigation.	· · · · · · · · · · · ·		

3.3 Other issues

3.3.1 Low ground water development: Low ground water development is the one major issue of the block. Based on Ground water resource assessment as on 2020 stage of ground water development is only 16.04%.

3.3.2 Fluoride contamination: Fluoride value found beyond permissible limit at villages Paikpara (2.59 mg/l) and Lathakhamhan (3.87 mg/l).

4. SUPPLY SIDE MANAGEMENT

4.1 Ground Water Development Strategies-Construction of Tube well/Bore well based on available safe resources: As per Dynamic Ground Water Resource estimation 2020, the stage of ground water development is only 16.04%. To enhance the ground water development from the present 16.04 % to 50% stage of development, recommended for construction of 4332 dug wells (10 -20 m depth; 2 to 4 m diameter) and 1053 bore wells (up to 150 m depth) for creating additional irrigation potential 2166 ham through dug wells and 1264 ham through bore wells.

4.2. Ground Water Resource And Enhancement/ Proposed Artificial Recharge structures				
Area of block (Sq. km.)		624.15		
Area suitable for artificial recharge (Sq.)	km.)	434.34		
Type of aquifer		Hard rock/Soft rock		
Area feasible for artificial recharge in Sq.	. km.(Post	434.34		
monsoon water level> 3 mbgl)				
Average annual monsoon rainfall		1515.49 mm		
Average post monsoon water level		3.49 mbgl.		
Thickness of unsaturated zone		0.49 m.		
Sub-surface storage space		4.26 MCM		
Surface water requirement @ 75% effici	ency	5.66 MCM		
Source water availability = 30% of Rain f	all x area	206.71 MCM		
Non-committed runoff = 50% of runoff		103.35 MCM		
Surface water available for recharge = 30% of Non-		31.00 MCM		
committed water.				
Surplus water available (MCM)		25.34		
Proposed structures Percolation tar		ık (Average	Nala Bund/Check dam /	

	gross capacity – 0.188 MCM *2 filling = 0.38 MCM), 30% of water available for	Gully Plug (Average gross capacity – 0.024 MCM* 3 filling = 0.072 MCM), 30% of		
	recharge	water available for recharge		
Proposed number of structures	41	216		
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	15.58	15.55		
5. DEMAND SIDE MANAGEMENT				
Promoting Micro irrigation Technique (drip or sprinkler irrigation, etc.),				
• Crop choice management and diversification(Promoting less intensive crops)				

LAST TEN YEARS (2012 TO 2021) ANNUAL RAINFALL DATA ANALYSIS OF SIMDEGA DISTRICT

Block: Simdega (2012 – 2021)

Average annual rainfall (mm):1492.18

Standard deviation: 318.27

Coefficient of variation (in %): 21.33

Year	Annual rainfall (mm)	Departure %	Category
2012	1631	9.30	Normal
2013	1453	- 2.63	Normal
2014	1625.1	8.91	Normal
2015	1240.5	-16.87	Normal
2016	1375.9	-7.79	Normal
2017	1581.5	5.98	Normal
2018	1295.5	-13.18	Normal
2019	1917	28.47	Excess
2020	1926.8	29.12	Excess
2021	875.5	41.33	Excess

Block: Kurdeg (2012 – 2021)

Average annual rainfall (mm):1295.83

Standard deviation: 299.93

Coefficient of variation (in %): 23.15

Year	Annual rainfall (mm)	Departure %	Category
2012	965.9	-25.46	Moderate
2013	1119.7	-13.59	Normal
2014	1040.2	-19.73	Normal
2015	1677.1	29.42	Excess
2016	1283.5	-0.95	Normal
2017	1323.6	2.14	Normal
2018	1245	-3.92	Normal
2019	1522.3	17.48	Normal
2020	1830	41.22	Excess
2021	951	-26.61	Maderate

Block: Bolba (2012 – 2021) Average annual rainfall (mm): 1085.81 Standard deviation: 219.98 Coefficient of variation (in %): 20.26

Year	Annual rainfall (mm)	Departure %	Category
2012	955.4	-12.01	Normal
2013	1052	-3.11	Normal
2014	1367.2	25.92	Excess
2015	1310.1	20.66	Normal
2016	1143.1	5.28	Normal

2017	1401.4	29.06	Excess
2018	919.2	-15.34	Normal
2019	1034.5	-4.73	Normal
2020	962.9	-11.32	Normal
2021	712.3	-34.40	Moderate

Block: Thethaitangar (2012 – 2021) Average annual rainfall (mm):1515.49 Standard deviation: 271.36 Coefficient of variation (in %): 17.91

Year	Annual rainfall (mm)	Departure %	Category
2012	1364.2	-9.98	Normal
2013	1766.7	16.58	Normal
2014	1803.8	19.02	Normal
2015	1417.8	-6.45	Normal
2016	1579.7	4.24	Normal
2017	1407	-7.16	Normal
2018	1290	-14.88	Normal
2019	1525.1	0.63	Normal
2020	1956.8	29.12	Excess
2021	1043.8	-31.12	Moderate

Block: Bano (2012 – 2021) Average annual rainfall (mm): 1080.02 Standard deviation: 287.90 Coefficient of variation (in %): 26.66

Year	Annual rainfall (mm)	Departure %	Category
2012	695.7	-35.58	Moderate
2013	792.9	-26.58	Moderate
2014	1189.4	10.13	Normal
2015	1205.8	11.65	Normal
2016	1324.7	22.66	Normal
2017	1337.3	23.82	Normal
2018	1017.8	-5.76	Normal
2019	1187.5	9.95	Normal
2020	1437.1	33.06	Excess
2021	612	-43.33	Moderate

Block: Jaldega (2012 – 2021) Average annual rainfall (mm):1058.31 Standard deviation: 278.01 Coefficient of variation (in %): 26.27

Year Annual rainfall (mm) Departure % C	Category

2012	1202	13.58	Normal
2013	999.3	-5.58	Normal
2014	1391.1	31.44	Excess
2015	1085.4	2.56	Normal
2016	1170.7	10.62	Normal
2017	1283.9	21.32	Normal
2018	784.5	-25.87	Moderate
2019	973.7	-7.99	Normal
2020	1249	18.01	Normal
2021	443.5	-58.09	Severe

Block: Kersai (2012 – 2021) Average annual rainfall (mm):1229.03 Standard deviation: 379.56 Coefficient of variation (in %): 30.88

Year	Annual rainfall (mm)	Departure %	Category
2012	932.8	-24.10	Normal
2013	657.8	-46.48	Moderate
2014	1022.4	16.81	Normal
2015	1393.5	13.38	Normal
2016	1241.7	1.03	Normal
2017	1448.8	17.88	Normal
2018	1310.1	6.60	Normal
2019	1809.3	47.21	Excess
2020	1695.7	37.97	Excess
2021	778.2	-36.68	Moderate

Block: Pakartarn (2012 – 2021)

Average annual rainfall (mm):1285.86 Standard deviation: 227.58 Coefficient of variation (in %): 17.70

Year	Annual rainfall (mm)	Departure %	Category
2012	1340.5	4.25	Normal
2013	945.1	-26.50	Moderate
2014	1366.7	6.29	Normal
2015	1327.9	3.27	Normal
2016	1037.8	19.29	Normal
2017	1406.1	9.35	Normal
2018	1147.4	10.77	Normal
2019	1594.3	23.99	Normal
2020	1612	25.36	Excess
2021	1080.8	15.95	Normal

Block: Kolebira (2012 – 2021)

Average annual rainfall (mm): 1072.65

Standard deviation: 320.39 Coefficient of variation (in %): 29.87

Year	Annual rainfall (mm)	Departure %	Category
2012	498.1	-53.56	Severe
2013	873.8	18.54	Normal
2014	1390.6	29.64	Excess
2015	956.1	10.87	Normal
2016	964.3	10.10	Normal
2017	1484.9	38.43	Excess
2018	1092.9	1.89	Normal
2019	1397.6	30.29	Excess
2020	1457.4	1.42	Normal
2021	1010.8	5.77	Normal

Block: Bansjor (2012 – 2021) Average annual rainfall (mm): 1190.45 Standard deviation: 255.32 Coefficient of variation (in %): 21.45

Year	Annual rainfall (mm)	Departure %	Category
2012	838.9	-29.53	Moderate
2013	996	16.33	Normal
2014	1141	4.15	Normal
2015	1052.4	11.60	Normal
2016	1241.8	4.31	Normal
2017	1412.9	18.69	Normal
2018	1392.1	16.93	Normal
2019	1592.4	33.76	Excess
2020	1382.2	16.10	Normal
2021	854.8	-28.20	Moderate

Annexure - II

DETAILS OF KEY WELLS ESTABLISHED FOR NATIONAL AQUIFER MAPPING STUDY OF SIMDEGA DISTRICT, 2021–22

Well	Village	Block	Owner	Location	Co-	Type of	Geology	Lifting	MP	Depth	Diameter
No.					ordinates	well		device	(magl)	(mbgl)	(m.)
1	Konsode	Bano	Late Ranjit	NHO owner, about 07	22.69449	Dug	Granite	Rope &	0.05	5.70	4.60
	(Bazar Toli)		Lakra	km from Bano on	84.89232	well	Gneiss	bucket			
				Kamdara road, LHS of							
				road							
2	Bano	Bano	Md. Alam	NHO owner on Bano-	22.64537	Dug	Granite	Rope &	0.42	7.30	4.60
				Kolebira road, RHS of	84.90819	well	Gneiss	bucket			
				road							
3	Lachragarh	Kolebira	Bhim Sen Panda	HNO owner, Trijunction	22.69805	Dug	Granite	Rope &	0.30	9.70	2.70
				of Bano-Kolebira- Jaldega	84.71500	well	Gneiss	bucket			
				road (LHS)							
4	Jaldega	Jaldega	Late	Near old Bank of India &	22.57022	Dug	Granite	Rope &	0.30	8.60	2.15
			Pramanand Jain	market area, LHS of	84.81185	well	Gneiss	bucket			
				Jaldega block to Simdega							
				road		_	a			10.00	. = 0
5	Bansjor	Bansjor	Manoj Kujur	NHO owner, entrance of	22.42537	Dug	Granite	Rope &	0.36	10.00	1.70
	(Sahara Toli)			the village (LHS)	84./1361	well	Gneiss	bucket		6.00	
6	Kulamara	Bansjor	Michel Kullu	NHO owner, LHS of	22.45456	Dug	Granite	Rope &	0.30	6.00	4.95
	(Dumarmunda)			Jamdih – Gangu Toli road	84.64695	well	Gneiss	bucket			
/	Gangu Toli	Jaldega	Alphonse	Near house of owner,	22.55159	Dug	Granite	Rope &	0.30		
			Topno	LHS of Jaldega – Simdega	84.73208	well	Gneiss	bucket			
-		Dava		road.	22 604 77		C	D 0	0.40	7.00	4.45
8	Hatinghode	Bano	Jay Kishore	LHS OF Bano –	22.60177	Dug	Granite	коре &	0.40	7.80	1.15
			впиіпуа	Manonarpur road, NHO	85.05907	well	Gneiss	рискет			
0	0		Cast	Owner	22 45702	Dur	Curryita	David 0	0.42	12.00	2.00
9	Orga	Jaidega	GOVT.	Near temple / papal tree	22.45793	Dug	Granite	Rope &	0.42	12.88	2.00
				road	04.91499	weii	Grieiss	DUCKEL			
10	Gerda	Bano	Govt.	Near papal tree & Mobile	22,47944	Dug	Granite	Rope &	0.45	6.95	3.00
	(Tiwari Toli)			Tower, RHS of village	84.99441	well	Gneiss	bucket	5		

Well	Village	Block	Owner	Location	Co-	Type of	Geology	Lifting	MP	Depth	Diameter
No.					ordinates	well		device	(magl)	(mbgl)	(m.)
				road							
11	Kohipat	Bano	Dev Prasad	NHO owner, RHS of Ghat	22.51070	Dug	Granite	Rope &	0.25	9.45	3.00
			Sahu	Bazar – Hurda road.	85.05386	well	Gneiss	bucket			
12	Paro	Bano	Asyani Topno	NHO owner, 15 km from	22.67534	Dug	Granite	Rope &	0.50	6.70	3.40
	(Naw mile)			Boano on Manoharpur	85.03237	well	Gneiss	bucket			
				road (RHS of road)							
13	Amba Toli	Kolebira	Arjun Mistry	About 06 km from	22.68240	Dug	Granite	Rope &	0.30	7.90	3.45
				Kolebira on Bano road	84.73865	well	Gneiss	bucket			
				(RHS), opp. to PHC, NHO							
				owner							
14	Kolomdega	Jaldega	Late Baldev	About 09 km from	22.56957	Dug	Granite	Rope &	0.50	7.10	3.10
			Sahu	Jaldega on Simdega road	84.77529	well	Gneiss	bucket			
				(RHS), near temple.	-						
Well	Village	Block	Owner	Location	Co-	Type of	Geology	Lifting	MP	Depth	Diameter
No.					ordinates	well		device	(magl)	(mbgl)	(m.)
15	Lomboi	Jaldega	Sursen Jojo	NHO owner, RHS of	22.53546	Dug	Granite	Rope &	0.00	7.60	4.30
				Jaldega – Pandripani	84.66717	well	Gneiss	bucket			
				road.		_					
16	Pandripani	Thetai-	Govt.	About 0.5 km (RHS) of	22.54872	Dug	Granite	Rope &	0.70	8.60	1.85
	(Karanj Toli)	tangar		Pandripani ckowk on	84.51829	well	Gneiss	bucket			
				Jaldega road.		_					
1/	Biru	Simdega	Uday Sahu	About 12 km from	22.68459	Dug	Granite	Rope &	0.50	10.00	3.25
				Simdega on Kolebira road	84.55049	well	Gneiss	bucket			
				(RHS), after crossing the							
10	Kalahina	Kalahina	Cast		22 60705	Due	Cusuits	Dama 0	0.05	10.00	2.55
18	Kolebira	Kolebira	Govt.	Within the PWD I.B.	22.69785	Dug	Granite	Rope &	0.65	10.00	3.55
10	Dutri Tali	Kalahira	Cout	Near the triivestice DUC	84.69371	well	Gneiss		0.55	7.00	2.15
19	Putri Ioli	Kolebira	Govt.	of Design Simplers road	22.70132	Dug	Granite	Rope &	0.55	7.00	3.15
				or Basia – Simuega roau	84./30/0	weii	Glieiss	рискег			
20	Baribiringa	Jaldega	Budhwa Jojo	Well is located at Sarjom	22.52722	Dug	Granite	Rope &	0.35	5.70	2.70
	_	_	_	Toli & before market	84.87277	well	Gneiss	bucket			

Well	Village	Block	Owner	Location	Co-	Type of	Geology	Lifting	MP	Depth	Diameter
No.					ordinates	well		device	(magl)	(mbgl)	(m.)
				area on Jaldega – Orga							
				road (RHS)							
21	Mama Bhagina	Jaldega	Jolen Barla	RHS of gangu Toli –	22.52025	Dug	Granite	Rope &	0.25	9.75	4.15
	(Barla Toli)			Jamdih road near solar	84.70725	well	Gneiss	bucket			
				pump water							
22	Kereya	Thethai-	Late francis	Well is located at	22.45277	Dug	Granite	Rope &	0.00	9.05	3.20
		tangar	kandulna	Thethaitangar – Bansjor	84.57944	well	Gneiss	bucket			
				road (RHS)							
23	Devbahar	Thethai-	Ilisiyus Soreng	RHS of Joram – Raiboga	22.42942	Dug	Granite	Rope &	0.00	6.20	3.50
		tangar		(Odissa) road, opposite	84.53771	well	Gneiss	bucket			
				to solar pump water							
				supply tank							
24	Thethaitangar	Thethai-	Govt.	Well is located at back	22.49944	Dug	Granite	Rope &	0.37	7.50	2.40
		tangar		side of tank the Govt.	84.50434	well	Gneiss	bucket			
				quarter on LHS of							
				Thethaitangar – Bolba							
				road							
25	Taraboga	Thethai-	Govt.	LHS of Thetaitangar –	22.46545	Dug	Granite	Rope &	0.50	6.70	3.20
		tangar		Bolba road	84.43237	well	Gneiss	bucket			
26	Koronjo	Bolba	Mission Church	Near Samudaik Bhawan	22.42947	Dug	Granite	Rope &	0.45	12.65	3.20
				& church	84.41641	well	Gneiss	bucket			
27	Bolba	Bolba	Govt.	Well is located within the	22.43047	Dug	Granite	Rope &	1.25	9.00	3.20
				campus of Police station,	84.34710	well	Gneiss	bucket			
				Bolba							
28	Khanda Nishan	Bolba	Krishna Singh	NHO owner, 13 km from	22.49187	Dug	Granite	Rope &	0.40	8.50	6.00
				Bolba – Kersai road (RHS)	84.25267	well	Gneiss	bucket			
29	Kersai	Kersai	Govt.	In front of Tahsil	22.52941	Dug	Granite	Rope &	0.50	9.30	2.50
				Kutchery near Jharkhand	84.23121	well	Gneiss	bucket			
				rajya gramin bank.							
30	Paikpara	Thethai-	Govt.	LHS of Simdega- Rengari	22.55822	Dug	Granite	Rope &	0.50	10.70	2.40
	(Bhandar Toli)	tangar		– Kersai road near	84.33402	well	Gneiss	bucket			

Well	Village	Block	Owner	Location	Co-	Type of	Geology	Lifting	MP	Depth	Diameter
No.					ordinates	well		device	(magl)	(mbgl)	(m.)
				Panchayat Sachiwalay							
31	Lathakhamhan	Thethai-	John Soreng	LHS of Simdega – Rengari	22.54981	Dug	Granite	Rope &	0.40	5.55	3.25
		tangar		road, NHO owner, 11 km	84.43058	well	Gneiss	bucket			
				from Simdega							
32	Simdega	Simdega	Govt.	In front of Teacher's	22.58833	Dug	Granite	Rope &	1.00	10.82	3.90
				training school	84.49166	well	Gneiss	bucket			
33	Belgarh	Simdega	Biren Kachhuwa	NHO owner on Simdega –	22.60020	Dug	Granite	Rope &	0.36	6.45	3.40
				Jokbahar road (RHS)	84.56649	well	Gneiss	bucket			
34	Dumardih	Kurdeg	Dauratiya Tigga	NHO owner, RHS of	22.54244	Dug	Granite	Rope &	0.30	10.40	1.90
	(Bhelwa Toli)			Kurdeg – Kutmakachhar	84.04119	well	Gneiss	bucket			
				road.							
35	Kurdeg	Kurdeg	B. Mahto	Well is located at back	22.56638	Dug	Granite	Rope &	0.50	7.10	5.00
				side of block campus, in	84.13305	well	Gneiss	bucket			
				irrigation quarter near							
				Airtel mobile tower							
36	Gariyajor	Kurdeg	Arun Minz	NHO owner at entrance	22.61614	Dug	Granite	Rope &	0.00	8.10	2.10
				(RHS) of the village	84.10394	well	Gneiss	bucket			
37	Kinkel	Kersai	Philip Kujur	NHO owner, RHS of	22.62602	Dug	Granite	Rope &	0.45	6.65	2.50
				Simdega – Kurdeg road.	84.23166	well	Gneiss	bucket			
38	Banabira	Simdega	Kanhaiya Singh	NHO owner, RHS of	22.70182	Dug	Granite	Rope &	0.40	6.10	2.50
				Sewai – Banabira road	84.28654	well	Gneiss	bucket			
39	Sewai	Simdega	Manoj Kumar	LHS of Simdega – Kurdeg	22.65103	Dug	Granite	Rope &	0.30	6.90	4.60
			Gupta	road before market	84.31568	well	Gneiss	bucket			
40	Ludi Bahar	Simdega	Anup khess	NHO owner, RHS of	22.64020	Dug	Granite	Rope &	0.30	7.00	6.00
				Simdega – Kurdeg road.	84.41935	well	Gneiss	bucket			
41	Kobang	Pakartarn	Dewan Sahu	About 200 m RHS of road	22.71364	Dug	Granite	Rope &	0.00	6.60	3.30
				on agriculture field	84.45402	well	Gneiss	bucket			
42	Kurushkela	Pakartarn	Mission Church	RHS of Simdega – Tamra	22.78964	Dug	Granite	Rope &	0.40	12.10	4.40
				 Palkot road within the 	84.52521	well	Gneiss	bucket			
				Church campus							

WATER LEVEL DATA OF KEY WELLS OF NATIONAL AQUIFER MAPPING STUDY AREA OF SIMDEGA DISTRICT, JHARKHAND, 2021 –22

Well	Village	Block	Water level (mbgl)	Water level
No.			May 2021	Nov. 2021	fluctuation (m)
1	2	3	4	5	6
1	Konsode (Bazar Toli)	Bano	7.25	2.46	4.79
2	Bano	Bano	5.75	3.13	2.62
3	Lachragarh	Kolebira	6.58	3.09	3.49
4	Jaldega	Jaldega	6.65	2.80	3.85
5	Bansjor (Sahara Toli)	Bansjor	7.50	6.24	1.26
6	Kulamara (Dumarmunda)	Bansjor	3.30	2.20	1.10
7	Gangu Toli	Jaldega	7.65	1.82	5.83
8	Hatinghode	Bano	4.25	1.93	2.32
9	Orga	Jaldega	7.25	2.52	4.73
10	Gerda (Tiwari Toli)	Bano	3.90	2.35	1.55
11	Kohipat	Bano	8.09	4.06	4.03
12	Paro (Naw mile)	Bano	5.00	1.97	3.03
13	Amba Toli	Kolebira	3.25	1.08	2.17
14	Kolomdega	Jaldega	4.80	1.50	3.30
15	Lomboi	Jaldega	5.77	3.18	2.59
16	Pandripani (Karanj Toli)	Thetaitangar	5.70	3.01	2.69
17	Biru	Simdega	5.10	2.30	2.82
18	Kolebira	Kolebira	7.95	4.76	3.19
19	Putri Toli	Kolebira	4.08	0.64	3.44
20	Baribiringa	Jaldega	2.20	1.35	0.85
21	Mama Bhagina (Barla Toli)	Jaldega	9.30	3.93	5.37
22	Kereya	Thetaitangar	8.20	3.69	4.51
23	Devbahar	Thetaitangar	3.40	2.35	1.05
24	Thethaitangar	Thetaitangar	5.30	3.20	2.10
25	Taraboga	Thetaitangar	6.20	3.67	2.53
26	Koronjo	Thetaitangar	10.85	7.47	3.38
27	Bolba	Bolba	5.80	2.32	3.48
28	Khanda Nishan	Bolba	6.40	2.63	3.77
29	Kersai	Kersai	5.92	2.58	3.34
30	Paikpara (Bhandar Toli)	Thetaitangar	7.80	3.36	4.44
31	Lathakhamhan	Thetaitangar	4.25	1.20	3.05
32	Simdega	Simdega	8.40	2.25	6.15
33	Belgarh	Simdega	4.55	2.95	1.60
34	Dumardih (Bhelwa Toli)	Kurdeg	7.80	3.60	4.20
35	Kurdeg	Kurdeg	6.30	4.67	1.63

36	Gariyajor	Kurdeg	6.10	3.50	2.60
37	Kinkel	Kersai	5.90	3.25	2.65
38	Banabira	Simdega	3.95	1.35	2.60
39	Sewai	Simdega	5.50	1.80	3.70
40	Ludi Bahar	Simdega	4.40	1.05	3.35
41	Kobang	Pakartarn	4.10	1.00	3.10
42	Kurushkela	Pakartarn	10.00	7.32	2.68

Annexure - IV

DETAILS OF WELLS CONSTRUCTED IN HARD FORMATION OF SIMDEGA DISTRICT, JHARKHAND

SI. No.	Location with coordinates	Block	District	Depth drilled (m)	Depth of Well	Thicknes s of weatheri	Length of casing	Fractures Encountered (mbgl)		Aquifer	SWL (mbgl)	Dis- charge (lps)
					(m)	ng (m)	lowered with dia. (m)	From	То			
1	Kolebira EW 22 ⁰ 39' 12" 84 ⁰ 41' 27"	Kolebira	Simdega	83.62	83.62	2.50	3.00 (7" dia.)	15.00 83.00	16.00 83.62	Fractured Granite gneiss	0.30 (magl)	20.00
2	Kolebira OW - I	Kolebira	Simdega	82.00	82.00	2.50	3.50 (7" dia.)	11.00 81.00	12.00 82.00	Fractured Granite gneiss	0.19	16.70
3	Kolebira OW - II	Kolebira	Simdega	84.00	84.00	2.50	3.50 (7" dia.)	14.00 82.50	15.00 83.50	Fractured Granite gneiss		16.70
4	Bano EW 22 ⁰ 49' 00" 84 ⁰ 54' 45"	Bano	Simdega	199.22	199.22	8.00	8.20 (7" dia.)	80.00 144.00	81.00 146.00	Fractured Granite gneiss	6.93	3.00
5	Bano - OW	Bano	Simdega	199.92	199.92	10.00	11.00 (7" dia.)	83.00	84.00	Fractured Granite gneiss	7.05	3.00
6	Banki EW 22 ⁰ 40' 15" 85 ⁰ 01' 07"	Bano	Simdega	199.92	199.92	7.00	7.50 (7" dia.)	54.00 122.00	55.00 123.00	Fractured Granite gneiss	7.18	0.40
7	Lachragarh EW 22 ⁰ 38' 30" 84 ⁰ 51' 53"	Kolebira	Simdega	199.92	199.92	11.00	11.50 (7" dia.)	15.00	16.00	Fractured Granite gneiss	5.70	4.50

SI. No.	Location with coordinates	Block	District	Depth drilled (m)	Depth of Well (m)	Thicknes s of weatheri ng (m)	Length of casing lowered with dia. (m)	Fractures Encountered (mbgl) From	То	Aquifer	SWL (mbgl)	Dis- charge (lps)
8	Lachragarh OW	Kolebira	Simdega	146.00	146.00	11.50	12.00 (7" dia.)	144.00	146.00	Fractured Granite gneiss		10.50
9	Jaldega EW 22 ⁰ 34' 10" 84 ⁰ 48' 50"	Jaldega	Simdega	199.92	199.92	13.00	13.50 (7" dia.)	18.00 94.00	20.00 95.00	Fractured Granite gneiss	4.16	0.45
10	Lomboi EW 22 ⁰ 31' 46" 84 ⁰ 39' 45"	Jaldega	Simdega	192.30	192.30	11.00	11.50 (7" dia.)	45.00	46.00	Fractured Granite gneiss		0.45
11	Pandripani EW 22 ⁰ 33' 05" 84 ⁰ 31' 05"	Thethai- tangar	Simdega	170.94	170.94	8.50	9.00 (7" dia.)	18.00 109.00	19.00 111.50	Fractured Granite gneiss	5.83	5.10
12	Pandripani OW - I	Thethai- tangar	Simdega	169.44	169.44	11.00	11.50 (7" dia.)	18.00	19.00	Fractured Granite gneiss	6.08	0.80
13	Pandripani OW - II	Thethai- tangar	Simdega	116.00	116.00	7.50	8.00 (7" dia.)	22.00 109.00	23.00 111.00	Fractured Granite gneiss	6.40	7.80
14	S. S. High School, Simdega, EW 22 ⁰ 36' 42" 84 ⁰ 29' 40"	Simdega	Simdega	199.92	199.92	11.00	11.50 (7″ dia.)	48.00	49.00	Fractured Granite gneiss	6.30	0.45

SI. No.	Location with coordinates	Block	District	Depth drilled (m)	Depth of Well	Thicknes s of weatheri	Length of casing	Fractures Encountered (mbgl)		Aquifer	SWL (mbgl)	Dis- charge (lps)
				(,	(m)	ng (m)	lowered with dia. (m)	From	То			
15	Officers Colony, Simdega, EW 22 ⁰ 37' 08" 84 ⁰ 29' 15"	Simdega	Simdega	199.92	199.92	27.50	28.00 (7" dia.)	181.00	182.50	Fractured Granite gneiss	10.40	3.00
16	Officers Colony, Simdega, OW	Simdega	Simdega	199.92	199.92	11.50	12.00 (7" dia.)	31.00 90.00 130.00	32.00 91.00 131.00	Fractured Granite gneiss	3.12	2.80
17	S. S. High School, Joram, EW 22 ⁰ 29' 40" 84 ⁰ 31' 30"	Thethai- tangar	Simdega	123.72	123.72	18.00	18.50 (7" dia.)	9.00 75.00 130.00	15.50 77.00 131.00	Fractured Granite gneiss	2.15	12.30
18	Pakartarn EW 22 ⁰ 42' 35" 84 ⁰ 26' 55"	Pakartarn	Simdega	203.00	203.00	5.00	5.50 (7" dia.)	102.00 131.00	102.50 131.50	Fractured Granite gneiss		0.13
19	Paledih EW 22 ⁰ 42' 32" 84 ⁰ 22' 06"	Pakartarn	Simdega	203.00	203.00	18.00	18.31 (7" dia.)	110.00	110.50	Fractured Granite gneiss		0.13
20	Unikel EW 22 ⁰ 41' 35" 84 ⁰ 53' 36"	Bano	Simdega	203.00	203.00	24.50	25.10 (7" dia.)					Dry
21	Kuladurum	Bano	Simdega	201.00	201.00	11.00	11.69	91.00	91.50	Fractured		0.43

SI. No.	Location with coordinates	Block	District	Depth drilled (m)	Depth of Well (m)	Thicknes s of weatheri ng (m)	Length of casing lowered with dia. (m)	Fractures Encountered (mbgl) From	То	Aquifer	SWL (mbgl)	Dis- charge (lps)
	EW 22 ⁰ 45' 06" 84 ⁰ 51' 46"						(7" dia.)			Granite gneiss		
22	Taraboga EW 22 ⁰ 27' 59" 84 ⁰ 26' 04"	Thethai- tangar	Simdega	203.00	203.00	23.50	23.89 (7" dia.)	76.00	76.30	Slightly Fractured Granite gneiss		Seepage only
23	Binjhiya Bandh - EW 22 ⁰ 31' 46" 84 ⁰ 26' 33"	Thethai- tangar	Simdega	201.00	201.00	12.50	12.91 (7" dia.)	16.00	16.50	Fractured Granite gneiss		0.13
24	Kereya EW 22 ⁰ 27' 22" 84 ⁰ 36' 02"	Thethai- tangar	Simdega	201.00	201.00	8.00	8.64 (7" dia.)					
25	Tutikel EW 22 ⁰ 39' 12" 84 ⁰ 46' 00"	Kolebira	Simdega	135.00	135.00	17.00	17.79 (7" dia.)	134.00	136.00	Fractured Granite gneiss		12.19
26	Tutikel OW	Kolebira	Simdega	135.00	135.00	12.00	12.60 (7" dia.)	134.00	136.00	Fractured Granite gneiss		7.79
27	Kolebira EW 22 ⁰ 39' 12" 84 ⁰ 41' 27"	Kolebira	Simdega	201.00	201.00	19.00	19.62 (7" dia.)	48.00	48.50	Fractured Granite gneiss		0.78

SI. No.	Location with coordinates	Block	District	Depth drilled (m)	Depth of Well (m)	Thicknes s of weatheri ng (m)	Length of casing lowered with	Fractures Encountered (mbgl) From	То	Aquifer	SWL (mbgl)	Dis- charge (lps)
28	Bansjor EW 22 ⁰ 25' 26" 84 ⁰ 43' 09"	Bansjor	Simdega	177.00	177.00	45.00	dia. (m) 45.23 (7" dia.)	54.00 175.00	55.00 176.00	Phylites		9.86
29	Bansjor OW	Bansjor	Simdega	180.00	180.00	45.00	51.32 (7" dia.)	55.00 178.00	56.00 179.00	Phylites		9.86
30	Huthutwa EW 22 ⁰ 31' 56" 84 ⁰ 48' 23"	Jaldega	Simdega	201.00	201.00	11.00	11.69 (7" dia.)					Dry
31	Binjhiya Pani -EW 22 ⁰ 30' 38" 84 ⁰ 45' 37"	Jaldega	Simdega	201.00	201.00	20.50	20.84 (7" dia.)	104.00	104.30	Jointed Granite Gneiss		Seepage only
32	Gangu Toli EW 22 ⁰ 33' 27" 84 ⁰ 43' 45"	Jaldega	Simdega	201.00	201.00	14.00	14.74 (7" dia.)	91.00 192.00	92.00 193.00	Fractured Granite gneiss		5.94
33	Gangu Toli OW	Jaldega	Simdega	201.00	201.00	11.00	11.69 (7" dia.)	69.00	70.50	Fractured Granite gneiss		2.15
34	Auga EW 22 ⁰ 24' 50" 84 ⁰ 15' 02"	Bolba	Simdega	201.00	201.00	11.50	12.91 (7" dia.)	85.00	86.00	Fractured Granite gneiss		0.43
35	Keslai Toli EW 22 ⁰ 37' 43" 84 ⁰ 16' 23"	Kersai	Simdega	201.00	201.00	20.00	20.53 (7" dia.)	70.00	70.30	Jointed Granite Gneiss		Seepage only

Annexure - V

WATER QUALITY DATA OF AQUIFER - I (DUG WELL SAMPLES) OF AQUIFER MAPPING STUDY AREA OF SIMDEGA DISTRICT (2021-22)

Sr.	Village	Block	Latitude	рН	EC	TDS	TH	Са	Mg	Na	К	HCO ₃	Cl	SO ₄	NO ₃	F
No.			&		(µS/c		←	Mg / I	\rightarrow							
			Longitude		m)		_									
1	Konsode	Bano	22.69449	7.10	144	93.6	60	18	3.65	5.02	0.89	73.80	7.09	8.29	0.17	BDL
			84.89232													
2	Bano	Bano	22.64537	7.56	485	315.25	140	48	4.86	46.08	4.38	184.50	46.09	21.49	14.61	BDL
			84.90819													
3	Lachragarh	Kolebira	22.69805	7.61	721	468.65	200	74	3.65	62.06	1.47	178.35	95.72	37.64	27.61	BDL
			84.71500													
4	Jaldega	Jaldega	22.57022	7.59	899	584.35	300	94	15.8	64.17	1.5	196.80	127.62	57.97	28.72	BDL
			84.81185													
5	Bansjor	Bansjor	22.42537	7.25	106	68.90	50	12	4.86	1	2.15	49.20	3.54	10.44	0.67	BDL
			84.71361													
6	Kulamara	Bansjor	22.45456	7.84	476	309.40	135	40	8.51	54.21	9.18	246.00	17.73	18	4.42	BDL
			84.64695													
7	Gangu Toli	Jaldega	22.55159	7.67	368	239.20	130	38	8.51	26.45	2.67	147.60	42.54	15.25	6.64	0.17
			84.73208													
8	Hatinghode	Bano	22.60177	7.57	378	245.70	150	46	8.51	15.77	1.80	123.00	35.45	27.64	19.26	0.43
			85.05907													
9	Orga	Jaldega	22.45793	7.06	344	223.60	130	32	12.15	27.36	3.37	86.10	53.18	16.13	27	BDL
			84.91499													
10	Gerda	Bano	22.47944	7.41	455	295.75	180	62	6.07	23.16	17.31	123.00	49.63	26.03	27.32	BDL
			84.99441													
11	Kohipat	Bano	22.51070	7.56	711	462.15	205	74	4.86	49.12	11.24	123.00	116.99	38.68	27.42	BDL
			85.05386													
12	Nawamile Paro	Bano	22.67534	7.56	269	174.85	115	34	7.29	9.22	0.97	110.70	24.82	15.01	5.12	1.14
			85.03237													
13	Amba Toli	Kolebira	22.68240	7.36	378	245.70	140	36	12.15	27.90	2.11	116.85	42.54	16.63	21.73	0.32

Sr.	Village	Block	Latitude	рН	EC	TDS	ТН	Са	Mg	Na	К	HCO ₃	Cl	SO ₄	NO ₃	F
No.			&		(μS/c		←	Mg / I	\rightarrow							
			Longitude		m)		1	1			1					
			84.73865													
14	Kolomdega	Jaldega	22.56957	7.21	118	76.70	45	12	3.65	7.26	0.29	43.05	9.27	7.36	3.06	BDL
			84.77529													
15	Lomboi	Jaldega	22.53500	7.41	231	150.15	85	22	7.29	18.62	1.19	92.25	21.27	10.80	7.18	BDL
			84.66666													
16	Pandripani	Thetaitangar	22.54872	7.21	145	94.25	65	16	6.08	3.55	1.53	49.20	8.63	5.28	12.06	BDL
			84.51829													
17	Biru	Simdega	22.55138	7.51	218	141.70	95	32	3.65	3.86	9.29	104.55	7.09	12.35	1.05	BDL
			84.73000													
18	Kolebira	Kolebira	22.70500	7.11	563	365.95	150	54	3.65	58.68	6.50	116.85	81.53	28.27	28.12	BDL
			84.68361													
19	Putri Toli	Kolebira	22.70500	7.11	71	46.15	35	8	3.65	1.02	1.43	24.60	3.55	8.65	3.05	0.24
			84.68361													
20	Baribiringa	Jaldega	22.52722	7.71	485	315.25	240	90	3.65	12.43	1.79	276.75	21.27	24.79	3.24	0.15
			84.87277													
21	Mama Bhagina	Jaldega	22.52025	7.00	151	98.15	70	16	7.29	2.21	7.07	55.35	10.64	14.96	7.68	0.18
			84.70725													
22	Kereya	Thetaitangar	22.45277	7.41	267	173.55	60	20	2.43	31.92	2.38	104.55	24.82	15.38	11.71	0.32
			84.57944													
23	Devbahar	Thetaitangar	22.42942	7.51	258	167.70	75	24	3.65	24.87	1.05	129.15	14.18	11.41	4.10	0.81
			84.53771													
24	Thethaitangar	Thetaitangar	22.49944	7.21	174	113.10	55	18	2.43	10.45	1.06	79.95	10.64	10.31	4.37	0.68
			84.50434													
25	Taraboga	Thetaitangar	22.46545	7.10	274	178.10	115	38	4.89	15.07	1.72	73.80	28.36	15.83	24.60	BDL
			84.43237													
26	Koronjo	Bolba	22.42947	7.75	487	316.55	190	68	4.86	25.72	3.73	252.15	24.82	19.39	8.00	0.23
			84.41641													
27	Bolba	Bolba	22.43	7.47	609	395.85	215	76	6.08	37.70	12.74	166.05	77.99	23.39	28.69	0.14
			84.34722													
28	Khanda Nishan	Bolba	22.49187	7.71	389	252.85	195	74	2.43	2.19	3.03	196.80	17.73	20.05	5.72	0.95
			84.25267													

Sr.	Village	Block	Latitude	рН	EC	TDS	ТН	Са	Mg	Na	К	HCO ₃	Cl	SO ₄	NO ₃	F
No.			&		(μS/c		←	Mg / I	\rightarrow							
			Longitude		m)											
29	Kersai	Kersai	22.52941	7.71	1307	849.55	330	86	27.95	133.23	1.73	202.95	255.24	48.67	28.08	0.33
			84.23121													
30	Paikpara	Thetaitangar	22.55822	7.64	490	318.50	215	52	20.65	25.36	1.33	178.35	67.36	14.13	4.68	0.34
			84.33402													
31	Lathakhamhan	Thetaitangar	22.54981	7.21	107	69.55	35	10	2.43	11.17	0.19	43.05	7.09	10.05	3.64	0.18
			84.43058													
32	Simdega	Simdega	22.58833	7.07	456	296.40	165	46	12.15	38.36	5.25	147.60	50.90	11.02	33.94	0.17
			84.49166													
33	Belgarh	Simdega	22.60020	7.41	321	208.65	120	40	4.86	11.53	15.17	104.55	39.00	22.41	17.32	BDL
			84.56649													
34	Dumardih	Kurdeg	22.54244	7.61	376	244.4	130	48	2.43	31.67	4.97	202.95	28.36	10.78	6.74	BDL
	(Bhelwa Toli)		84.04119													
35	Kurdeg	Kurdeg	22.56638	7.64	413	268.45	165	62	2.43	22.00	1.30	178.35	31.91	22.58	15.49	0.75
			84.13305													
36	Gariyajor	Kurdeg	22.61614	7.65	936	608.40	345	90	29.16	48.12	2.83	295.20	88.63	63.87	28.25	0.34
			84.10394													
37	Kinkel	Kersai	22.62602	7.42	618	401.70	235	86	4.86	29.79	2.76	215.25	65.02	22.65	18.74	1.03
			84.23166													
38	Banabira	Simdega	22.70182	6.87	195	126.75	70	16	7.29	11.65	3.20	67.65	17.73	14.50	18.14	0.10
			84.28654													
39	Sewai	Simdega	22.65103	7.56	860	559.00	319	120	4.56	48.14	1.13	289.05	109.90	42.82	26.40	0.80
			84.31568													
40	Ludi Bahar	Simdega	22.64020	7.47	563	365.95	215	70	9.72	32.79	3.13	246.00	60.27	18.04	6.38	0.70
			84.41935													
41	Kobang	Pakartarn	22.71364	6.73	468	304.20	155	44	10.94	35.56	5.03	147.60	60.27	7.54	27.74	BDL
			84.45402													
42	Kurushkela	Simdega	22.78964	6.67	118	76.70	45	10	4.86	6.18	0.74	36.90	10.64	11.17	8.20	0.21
			84.52521													

Annexure - VII

WATER QUALITY DATA OF AQUIFER - II (HAND PUMP SAMPLES) OF AQUIFER MAPPING STUDY AREA OF SIMDEGA DISTRICT (2021-22)

Sr.	Village	Block	Latitude	рН	EC	TDS	TH	Са	Mg	Na	К	HCO ₃	Cl	SO ₄	NO ₃	F
No.			&		(µS/c		÷	- Mg /	I→							
			Longitude		m)		-						-	_	-	-
1	Konsode	Bano	22.69449	7.31	226	146.90	100	28	7.29	10.97	0.65	116.85	7.09	7.47	0	0.58
			84.89232													
2	Bano	Bano	22.64537	7.21	216	140.40	95	26	7.29	12.43	1.03	116.85	14.18	9.75	0	1.03
			84.90819													
3	Lachragarh	Kolebira	22.69805	7.37	752	488.80	330	128	2.43	26.64	1.74	202.95	106.35	33.00	28.85	0.64
			84.71500													
4	Jaldega	Jaldega	22.57022	7.41	523	339.95	195	66	7.29	24.65	2.34	129.15	67.36	20.49	28.03	0.70
			84.81185													
5	Bansjor	Bansjor	22.42537	7.51	297	193.05	100	36	2.43	22.14	3.23	147.60	14.18	11.73	3.18	0.25
			84.71361													
6	Kulamara	Bansjor	22.45456	7.67	387	251.55	130	40	7.29	32.39	4.31	190.65	7.09	18.02	3.05	1.15
			84.64695													
7	Gangu Toli	Jaldega	22.55159	7.41	411	267.15	175	58	7.29	15.07	2.28	166.05	42.54	12.29	23.86	BDL
			84.73208													
8	Hatinghode	Bano	22.60177	7.70	523	339.95	255	86	9.72	17.10	4.26	258.30	31.91	12.29	13.56	0.53
			85.05907													
9	Orga	Jaldega	22.45793	7.10	364	236.60	135	42	7.29	20.61	0.98	79.95	63.81	16.20	24.71	BDL
			84.91499													
10	Gerda	Bano	22.47944	7.53	358	232.70	175	58	7.29	4.59	3.35	166.05	21.27	9.95	13.44	0.19
			84.99441													
11	Kohipat	Bano	22.51070	7.41	393	255.45	160	60	2.43	13.13	3.52	153.75	31.91	27.55	0	BDL
			85.05386													
12	Nawamile Paro	Bano	22.67534	7.61	268	174.20	110	40	2.43	13.18	1.95	129.15	14.18	11.24	4.53	2.30
			85.03237													
13	Amba Toli	Kolebira	22.68240	6.91	143	92.95	40	14	1.22	17.13	0.85	73.80	7.09	6.33	0.24	0.78

Sr.	Village	Block	Latitude	рН	EC	TDS	TH	Са	Mg	Na	К	HCO₃	Cl	SO ₄	NO ₃	F
No.			&		(µS/c	\leftarrow Mg / I \rightarrow										
			Longitude		m)											
			84.73865													
14	Kolomdega	Jaldega	22.56957	7.11	166	107.90	60	22	1.22	9.61	1.71	73.80	10.64	11.04	2.34	BDL
			84.77529													
15	Lomboi	Jaldega	22.53500	7.46	365	237.25	145	52	3.65	20.90	2.28	178.35	14.18	20.57	1.26	1.07
			84.66666													
16	Pandripani	Thetaitangar	22.54872	7.59	446	289.90	160	50	8.51	29.58	1.96	159.90	49.63	18.03	12.92	0.90
			84.51829													
17	Biru	Simdega	22.55138	6.93	209	135.85	65	24	1.22	20.58	0.69	61.50	28.36	6.82	26.13	0.16
			84.73000													
18	Kolebira	Kolebira	22.70500	7.41	921	598.65	275	90	12.15	68.72	19.13	307.50	102.81	44.92	27.83	BDL
			84.68361													
19	Putri Toli	Kolebira	22.70500	7.32	152	98.80	55	16	3.65	9.48	2.98	73.80	3.54	7.29	2.29	0.82
			84.68361													
20	Baribiringa	Jaldega	22.52722	7.70	54.	351	220	84	2.43	15.10	2.17	270.60	21.36	16.25	9.25	0.18
			84.87277													
21	Mama Bhagina	Jaldega	22.52025	7.57	370	240.50	130	42	6.08	30.27	5.77	141.45	17.73	29.38	27.30	0.20
			84.70725													
22	Kereya	Thetaitangar	22.45277	7.67	417	271.05	140	32	14.58	33.04	3.04	184.50	21.27	18.93	8.93	0.66
			84.57944													
23	Devbahar	Thetaitangar	22.42942	7.54	260	169	100	36	2.43	20.63	1.05	123.00	14.18	6.87	6.87	0.73
			84.53771													
24	Thethaitangar	Thetaitangar	22.49944	7.17	470	305.50	175	50	12.15	27.78	2.31	178.35	35.45	35.05	13.77	0.57
			84.50434													
25	Taraboga	Thetaitangar	22.46545	7.00	201	130.65	65	20	3.65	13.97	0.22	86.10	10.64	8.48	4.70	0.42
			84.43237													
26	Koronjo	Bolba	22.42947	7.11	266	172.90	100	28	7.29	20.93	2.20	147.60	14.18	10.95	2.86	0.17
			84.41641													
27	Bolba	Bolba	22.43	7.07	552	358.80	195	54	14.58	33.63	2.37	184.50	67.36	23.56	28.62	BDL
			84.34722													
28	Khanda Nishan	Bolba	22.49187	7.07	280	182	100	28	7.29	18.27	3.39	116.85	24.82	17.06	1.16	0.26
			84.25267													

Sr.	Village	Block	Latitude	рН	EC	TDS	TH	Са	Mg	Na	К	HCO ₃	Cl	SO ₄	NO ₃	F
No.			&		(μS/c	← Mg / I →										
			Longitude		m)											
29	Kersai	Kersai	22.52941	7.07	187	121.55	70	18	6.08	19.56	0.54	61.50	24.82	7.46	4.14	1.06
			84.23121													
30	Paikpara	Thetaitangar	22.55822	7.51	380	247	130	44	4.86	29.31	2.01	147.60	28.36	18.42	1.74	2.59
			84.33402													
31	Lathakhamhan	Thetaitangar	22.54981	7.54	454	295.10	160	62	1.22	30.70	2.10	196.80	21.27	12.25	3.87	3.87
			84.43058													
32	Simdega	Simdega	22.58833	7.23	169	109.85	65	18	4.86	12.15	0.78	67.65	10.64	9.78	3.45	1.86
			84.49166													
33	Belgarh	Simdega	22.60020	7.10	133	86.45	45	16	1.22	9.88	0.40	61.50	7.09	7.57	7.56	0.52
			84.56649													
34	Dumardih	Kurdeg	22.54244	6.77	169	109.85	55	20	1.22	10.71	1.54	73.80	7.09	9.45	2.28	0.25
	(Bhelwa Toli)		84.04119													
35	Kurdeg	Kurdeg	22.56638	7.17	336	218.40	130	36	9.72	19.23	2.43	141.45	28.36	11.59	4.73	0.26
			84.13305													
36	Gariyajor	Kurdeg	22.61614	7.51	1127	732.55	500	160	24.30	33.22	4.02	393.60	95.12	63.90	29.10	0.15
			84.10394													
37	Kinkel	Kersai	22.62602	7.51	821	533.65	380	102	30.38	21.53	2.14	221.40	113.44	35.55	27.80	
			84.23166													
38	Banabira	Simdega	22.70182	7.30	152	98.80	45	12	3.54	14.26	0.67	61.50	14.18	8.97	0	1.69
			84.28654													
39	Sewai	Simdega	22.65103	7.60	682	443.30	260	54	30.38	42.58	1.62	239.85	53.18	62.11	13.45	2.18
			84.31568													
40	Kochedega	Simdega		7.14	204	132.60	75	24	3.54	12.56	0.21	61.50	21.27	11.72	17.59	1.13
41	Kobang	Pakartarn	22.71364	6.88	210	136.50	75	20	6.08	15.17	0.87	61.50	21.27	12.29	25.05	1.07
			84.45402													
42	Kurushkela	Simdega	22.78964	7.17	157	102.05	65	22	2.43	7.65	0.99	67.65	14.18	9.55	0.21	0.45
			84.52521													